DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3

Abstract

Anti-NASICON Fe2(MoO4)3 (P21/c) shows significant structural and electrochemical differences in the intercalation of Li+ and Na+ ions. To understand the origin of this behavior, we have used a combination of in situ X-ray and high-resolution neutron diffraction, total scattering, electrochemical measurements, density functional theory calculations, and symmetry-mode analysis. We find that for Li+-intercalation, which proceeds via a two-phase monoclinic-to-orthorhombic (Pbcn) phase transition, the host lattice undergoes a concerted rotation of rigid polyhedral subunits driven by strong interactions with the Li+ ions, leading to an ordered lithium arrangement. Na+-intercalation, which proceeds via a two-stage solid solution insertion into the monoclinic structure, similarly produces rotations of the lattice polyhedral subunits. Furthermore, using a combination of total neutron scattering data and density functional theory calculations, we find that while these rotational distortions upon Na+-intercalation are fundamentally the same as for Li+-intercalation, they result in a far less coherent final structure, with this difference attributed to the substantial difference between the ionic radii of the two alkali metals.

Authors:
 [1];  [1];  [2];  [1];  [1]
  1. Univ. of Southern California, Los Angeles, CA (United States)
  2. Univ. of Bath (United Kingdom)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Southern California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1324795
Alternate Identifier(s):
OSTI ID: 1418544
Grant/Contract Number:  
AC02-06CH11357; AC05-00OR22725; FG02-11ER46826; DMR-1554204
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 12; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemical structure; physical and chemical processes; intercalation; lattices; ions

Citation Formats

Zhou, Shiliang, Barim, Gözde, Morgan, Benjamin J., Melot, Brent C., and Brutchey, Richard L. Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3. United States: N. p., 2016. Web. doi:10.1021/acs.chemmater.6b01806.
Zhou, Shiliang, Barim, Gözde, Morgan, Benjamin J., Melot, Brent C., & Brutchey, Richard L. Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3. United States. https://doi.org/10.1021/acs.chemmater.6b01806
Zhou, Shiliang, Barim, Gözde, Morgan, Benjamin J., Melot, Brent C., and Brutchey, Richard L. Fri . "Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3". United States. https://doi.org/10.1021/acs.chemmater.6b01806. https://www.osti.gov/servlets/purl/1324795.
@article{osti_1324795,
title = {Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3},
author = {Zhou, Shiliang and Barim, Gözde and Morgan, Benjamin J. and Melot, Brent C. and Brutchey, Richard L.},
abstractNote = {Anti-NASICON Fe2(MoO4)3 (P21/c) shows significant structural and electrochemical differences in the intercalation of Li+ and Na+ ions. To understand the origin of this behavior, we have used a combination of in situ X-ray and high-resolution neutron diffraction, total scattering, electrochemical measurements, density functional theory calculations, and symmetry-mode analysis. We find that for Li+-intercalation, which proceeds via a two-phase monoclinic-to-orthorhombic (Pbcn) phase transition, the host lattice undergoes a concerted rotation of rigid polyhedral subunits driven by strong interactions with the Li+ ions, leading to an ordered lithium arrangement. Na+-intercalation, which proceeds via a two-stage solid solution insertion into the monoclinic structure, similarly produces rotations of the lattice polyhedral subunits. Furthermore, using a combination of total neutron scattering data and density functional theory calculations, we find that while these rotational distortions upon Na+-intercalation are fundamentally the same as for Li+-intercalation, they result in a far less coherent final structure, with this difference attributed to the substantial difference between the ionic radii of the two alkali metals.},
doi = {10.1021/acs.chemmater.6b01806},
journal = {Chemistry of Materials},
number = 12,
volume = 28,
place = {United States},
year = {Fri May 27 00:00:00 EDT 2016},
month = {Fri May 27 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New Horizons for Conventional Lithium Ion Battery Technology
journal, September 2014

  • Erickson, Evan M.; Ghanty, Chandan; Aurbach, Doron
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 19
  • DOI: 10.1021/jz501387m

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Recent progress in cathode materials research for advanced lithium ion batteries
journal, May 2012

  • Xu, Bo; Qian, Danna; Wang, Ziying
  • Materials Science and Engineering: R: Reports, Vol. 73, Issue 5-6
  • DOI: 10.1016/j.mser.2012.05.003

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries
journal, June 2013

  • Masquelier, Christian; Croguennec, Laurence
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr3001862

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution
journal, January 1998

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 145, Issue 5
  • DOI: 10.1149/1.1838513

Changes in Electronic Structure upon Li Insertion Reaction of Monoclinic Li 3 Fe 2 (PO 4 ) 3
journal, September 2006

  • Shirakawa, Junichi; Nakayama, Masanobu; Wakihara, Masataka
  • The Journal of Physical Chemistry B, Vol. 110, Issue 36
  • DOI: 10.1021/jp0622379

Lithium insertion into Fe2(MO4)3 frameworks: Comparison of M = W with M = Mo
journal, December 1987


ChemInform Abstract: CHEMICAL AND ELECTROCHEMICAL ALKALI METAL INTERCALATION IN THE 3D-FRAMEWORK OF IRON(III) MOLYBDATE FE2(MOO4)3
journal, March 1985

  • Nadiri, A.; Delmas, C.; Salmon, R.
  • Chemischer Informationsdienst, Vol. 16, Issue 9
  • DOI: 10.1002/chin.198509038

Sodium intercalation into the defect garnets Fe2(MoO4)3 and Fe2(WO4)3
journal, November 1990


NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery
journal, September 2012


Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3
journal, March 2015

  • Yue, Ji-Li; Zhou, Yong-Ning; Shi, Si-Qi
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08810

A general precipitation strategy for large-scale synthesis of molybdate nanostructures
journal, January 2008

  • Peng, Cheng; Gao, Lian; Yang, Songwang
  • Chemical Communications, Issue 43
  • DOI: 10.1039/b812033a

In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials
journal, July 2002


Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy
journal, May 2013


PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


AMPLIMODES : symmetry-mode analysis on the Bilbao Crystallographic Server
journal, September 2009

  • Orobengoa, Danel; Capillas, Cesar; Aroyo, Mois I.
  • Journal of Applied Crystallography, Vol. 42, Issue 5
  • DOI: 10.1107/S0021889809028064

Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
journal, October 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Phase separation in Li x FePO 4 induced by correlation effects
journal, May 2004


The crystal structure and twinning behavior of ferric molybdate, Fe2(MoO4)3
journal, December 1979


Comparison of UV and Visible Raman Spectroscopy of Bulk Metal Molybdate and Metal Vanadate Catalysts
journal, December 2005

  • Tian, Hanjing; Wachs, Israel E.; Briand, Laura E.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 49
  • DOI: 10.1021/jp053879j

X-ray photoelectron spectroscopic studies of iron oxides
journal, September 1977

  • McIntyre, N. S.; Zetaruk, D. G.
  • Analytical Chemistry, Vol. 49, Issue 11
  • DOI: 10.1021/ac50019a016

Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries
journal, December 2013

  • Lu, Peng; Li, Chen; Schneider, Eric W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4111019

Structure of the lithium insertion compound Li2Fe2(MoO4)3 from neutron powder diffraction data
journal, June 1986


Raman and FTIR Spectroscopic Study of Li[sub x]FePO[sub 4] (0≤x≤1)
journal, January 2004

  • Burba, Christopher M.; Frech, Roger
  • Journal of The Electrochemical Society, Vol. 151, Issue 7
  • DOI: 10.1149/1.1756885

Chemical and Structural Indicators for Large Redox Potentials in Fe-Based Positive Electrode Materials
journal, March 2014

  • Melot, Brent C.; Scanlon, David O.; Reynaud, Marine
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14
  • DOI: 10.1021/am405579h

Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure
journal, December 2011

  • Ellis, Brian L.; Ramesh, T. N.; Davis, Linda J. M.
  • Chemistry of Materials, Vol. 23, Issue 23
  • DOI: 10.1021/cm201773n

Alkali-ion Conduction Paths in LiFeSO 4 F and NaFeSO 4 F Tavorite-Type Cathode Materials
journal, April 2011

  • Tripathi, Rajesh; Gardiner, Grahame R.; Islam, M. Saiful
  • Chemistry of Materials, Vol. 23, Issue 8
  • DOI: 10.1021/cm200683n

Understanding and Promoting the Rapid Preparation of the Triplite -Phase of LiFeSO 4 F for Use as a Large-Potential Fe Cathode
journal, October 2012

  • Ati, Mohamed; Sathiya, Mariyappan; Boulineau, Sylvain
  • Journal of the American Chemical Society, Vol. 134, Issue 44
  • DOI: 10.1021/ja3074402

Design and Preparation of Materials for Advanced Electrochemical Storage
journal, June 2012

  • Melot, Brent C.; Tarascon, J. -M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300088q

Electronically conductive phospho-olivines as lithium storage electrodes
journal, September 2002

  • Chung, Sung-Yoon; Bloking, Jason T.; Chiang, Yet-Ming
  • Nature Materials, Vol. 1, Issue 2, p. 123-128
  • DOI: 10.1038/nmat732

Mechanisms of ionic conduction in Li2SO4 and LiNaSO4: Paddle wheel or percolation?
journal, March 1995


Disordering phenomena in superionic conductors
journal, August 2002


Reverse Monte Carlo modelling of crystalline disorder
journal, January 2005


Structure and Stability of Sodium Intercalated Phases in Olivine FePO 4
journal, July 2010

  • Moreau, P.; Guyomard, D.; Gaubicher, J.
  • Chemistry of Materials, Vol. 22, Issue 14
  • DOI: 10.1021/cm101377h

Works referencing / citing this record:

Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries
journal, June 2017


Facile aqueous synthesis of high performance Na 2 FeM(SO 4 ) 3 (M = Fe, Mn, Ni) alluaudites for low cost Na-ion batteries
journal, January 2020

  • Plewa, Anna; Kulka, Andrzej; Hanc, Emil
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta11565j

Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries
journal, January 2018


Polyanion-Type Electrode Materials for Sodium-Ion Batteries
journal, January 2017