DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning

Abstract

We describe how understanding the catalyzed formation and evolution of lithium-oxide products in Li₋O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li₋O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.

Authors:
 [1];  [2];  [3];  [4];  [3]
  1. Yale Univ., New Haven, CT (United States); Sookmyung Women's Univ., Seoul (Republic of Korea)
  2. Yale Univ., New Haven, CT (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  3. Yale Univ., New Haven, CT (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1259486
Alternate Identifier(s):
OSTI ID: 1336206
Report Number(s):
SAND-2016-4148J; BNL-113222-2016-JA
Journal ID: ISSN 1530-6984; 639503
Grant/Contract Number:  
AC04-94AL85000; SC0012704; DMR1119826; NSF-CBET-0954985; SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Name: Nano Letters; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium-oxygen batteries; catalytic membrane; product morphology; nanoparticles; oxygen evolving catalyst; 36 MATERIALS SCIENCE; Lithium−oxygen batteries

Citation Formats

Ryu, Won -Hee, Gittleson, Forrest S., Li, Jinyang, Tong, Xiao, and Taylor, Andre D. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b00856.
Ryu, Won -Hee, Gittleson, Forrest S., Li, Jinyang, Tong, Xiao, & Taylor, Andre D. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning. United States. https://doi.org/10.1021/acs.nanolett.6b00856
Ryu, Won -Hee, Gittleson, Forrest S., Li, Jinyang, Tong, Xiao, and Taylor, Andre D. Tue . "A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning". United States. https://doi.org/10.1021/acs.nanolett.6b00856. https://www.osti.gov/servlets/purl/1259486.
@article{osti_1259486,
title = {A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning},
author = {Ryu, Won -Hee and Gittleson, Forrest S. and Li, Jinyang and Tong, Xiao and Taylor, Andre D.},
abstractNote = {We describe how understanding the catalyzed formation and evolution of lithium-oxide products in Li₋O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li₋O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.},
doi = {10.1021/acs.nanolett.6b00856},
journal = {Nano Letters},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 21 00:00:00 EDT 2016},
month = {Tue Jun 21 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

The Lithium/Air Battery: Still an Emerging System or a Practical Reality?
journal, December 2014

  • Grande, Lorenzo; Paillard, Elie; Hassoun, Jusef
  • Advanced Materials, Vol. 27, Issue 5
  • DOI: 10.1002/adma.201403064

A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

Quantifying the promise of lithium–air batteries for electric vehicles
journal, January 2014

  • Gallagher, Kevin G.; Goebel, Steven; Greszler, Thomas
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43870h

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Materials challenges in rechargeable lithium-air batteries
journal, May 2014

  • Kwabi, D. G.; Ortiz-Vitoriano, N.; Freunberger, S. A.
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.87

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

Non-Aqueous and Hybrid Li-O2 Batteries
journal, May 2012

  • Black, Robert; Adams, Brian; Nazar, L. F.
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200001

On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

Core-Shell-Structured CNT@RuO 2 Composite as a High-Performance Cathode Catalyst for Rechargeable Li-O 2 Batteries
journal, November 2013

  • Jian, Zelang; Liu, Pan; Li, Fujun
  • Angewandte Chemie International Edition, Vol. 53, Issue 2
  • DOI: 10.1002/anie.201307976

An in situ formed Pd nanolayer as a bifunctional catalyst for Li-air batteries in ambient or simulated air
journal, January 2013

  • Zhu, Ding; Zhang, Lei; Song, Ming
  • Chemical Communications, Vol. 49, Issue 83
  • DOI: 10.1039/c3cc45574b

Operando Observation of the Gold–Electrolyte Interface in Li–O 2 Batteries
journal, October 2014

  • Gittleson, Forrest S.; Ryu, Won-Hee; Taylor, André D.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am504900k

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries
journal, November 2013

  • Oh, Dahyun; Qi, Jifa; Lu, Yi-Chun
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3756

Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts
journal, January 2012

  • Cheng, Fangyi; Chen, Jun
  • Chemical Society Reviews, Vol. 41, Issue 6, p. 2172-2192
  • DOI: 10.1039/c1cs15228a

Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries
journal, April 2013

  • Jung, Hun-Gi; Jeong, Yo Sub; Park, Jin-Bum
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400477d

Performance-improved Li–O 2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode
journal, January 2014

  • Li, Fujun; Chen, Yong; Tang, Dai-Ming
  • Energy Environ. Sci., Vol. 7, Issue 5
  • DOI: 10.1039/c3ee44043e

A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries
journal, January 2013

  • Lim, Hee-Dae; Song, Hyelynn; Gwon, Hyeokjo
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41910j

Catalyst and electrolyte synergy in Li–O2 batteries
journal, January 2014

  • Gittleson, Forrest S.; Sekol, Ryan C.; Doubek, Gustavo
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 7
  • DOI: 10.1039/c3cp54555e

One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries
journal, January 2015

  • Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07665

3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance
journal, January 2014

  • Xu, Ji-Jing; Wang, Zhong-Li; Xu, Dan
  • Energy & Environmental Science, Vol. 7, Issue 7
  • DOI: 10.1039/c3ee42934b

A Mo 2 C/Carbon Nanotube Composite Cathode for Lithium–Oxygen Batteries with High Energy Efficiency and Long Cycle Life
journal, February 2015


Pt and Pd catalyzed oxidation of Li 2 O 2 and DMSO during Li–O 2 battery charging
journal, January 2016

  • Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark
  • Chemical Communications, Vol. 52, Issue 39
  • DOI: 10.1039/C6CC01778A

An improved high-performance lithium–air battery
journal, June 2012

  • Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum
  • Nature Chemistry, Vol. 4, Issue 7
  • DOI: 10.1038/nchem.1376

Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping
journal, January 2012

  • Li, Yongliang; Wang, Jiajun; Li, Xifei
  • Journal of Materials Chemistry, Vol. 22, Issue 38
  • DOI: 10.1039/c2jm34718k

Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries
journal, September 2013

  • Xu, Ji-Jing; Wang, Zhong-Li; Xu, Dan
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3438

Raman Spectroscopy in Lithium-Oxygen Battery Systems
journal, August 2015

  • Gittleson, Forrest S.; Yao, Koffi P. C.; Kwabi, David G.
  • ChemElectroChem, Vol. 2, Issue 10
  • DOI: 10.1002/celc.201500218

A Mesoporous Catalytic Membrane Architecture for Lithium–Oxygen Battery Systems
journal, December 2014

  • Ryu, Won-Hee; Gittleson, Forrest S.; Schwab, Mark
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl503760n

Understanding the Chemical Stability of Polymers for Lithium–Air Batteries
journal, January 2015

  • Amanchukwu, Chibueze V.; Harding, Jonathon R.; Shao-Horn, Yang
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm5040003

Instability of Poly(ethylene oxide) upon Oxidation in Lithium–Air Batteries
journal, March 2015

  • Harding, Jonathon R.; Amanchukwu, Chibueze V.; Hammond, Paula T.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/jp511794g

Controllable Polyol Synthesis of Uniform Palladium Icosahedra: Effect of Twinned Structure on Deformation of Crystalline Lattices
journal, September 2009

  • Li , Cuncheng; Sato, Ryota; Kanehara, Masayuki
  • Angewandte Chemie International Edition, Vol. 48, Issue 37
  • DOI: 10.1002/anie.200902786

Chemical and Morphological Changes of Li–O 2 Battery Electrodes upon Cycling
journal, September 2012

  • Gallant, Betar M.; Mitchell, Robert R.; Kwabi, David G.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp308093b

Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries
journal, May 2015

  • Xia, Chun; Black, Robert; Fernandes, Russel
  • Nature Chemistry, Vol. 7, Issue 6
  • DOI: 10.1038/nchem.2260

Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries
journal, May 2012

  • Wang, Zhong-Li; Xu, Dan; Xu, Ji-Jing
  • Advanced Functional Materials, Vol. 22, Issue 17, p. 3699-3705
  • DOI: 10.1002/adfm.201200403

Rate-Dependent Morphology of Li 2 O 2 Growth in Li–O 2 Batteries
journal, November 2013

  • Horstmann, Birger; Gallant, Betar; Mitchell, Robert
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 24
  • DOI: 10.1021/jz401973c

Disproportionation in Li–O2 Batteries Based on a Large Surface Area Carbon Cathode
journal, October 2013

  • Zhai, Dengyun; Wang, Hsien-Hau; Yang, Junbing
  • Journal of the American Chemical Society, Vol. 135, Issue 41, p. 15364-15372
  • DOI: 10.1021/ja403199d

Correlating Li/O 2 Cell Capacity and Product Morphology with Discharge Current
journal, April 2015

  • Griffith, Lucas D.; Sleightholme, Alice E. S.; Mansfield, John F.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 14
  • DOI: 10.1021/acsami.5b00574

Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge
journal, January 2013

  • Adams, Brian D.; Radtke, Claudio; Black, Robert
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40697k

Evolution of Li 2 O 2 Growth and Its Effect on Kinetics of Li–O 2 Batteries
journal, July 2014

  • Xia, Chun; Waletzko, Michael; Chen, Limei
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 15
  • DOI: 10.1021/am5010943

Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
journal, April 2010

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp102019y

The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries
journal, November 2012

  • Black, Robert; Lee, Jin-Hyon; Adams, Brian
  • Angewandte Chemie International Edition, Vol. 52, Issue 1, p. 392-396
  • DOI: 10.1002/anie.201205354

History Effects in Lithium-Oxygen Batteries: How Initial Seeding Influences the Discharge Capacity
journal, March 2014


Rechargeable Lithium/TEGDME-LiPF[sub 6]∕O[sub 2] Battery
journal, January 2011

  • Laoire, Cormac Ó; Mukerjee, Sanjeev; Plichta, Edward J.
  • Journal of The Electrochemical Society, Vol. 158, Issue 3
  • DOI: 10.1149/1.3531981

In situ monitoring of discharge/charge processes in Li–O2 batteries by electrochemical impedance spectroscopy
journal, March 2014


How Dopants Can Enhance Charge Transport in Li 2 O 2
journal, January 2015

  • Radin, Maxwell D.; Monroe, Charles W.; Siegel, Donald J.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503874c

Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not
journal, December 2011

  • Radin, Maxwell D.; Rodriguez, Jill F.; Tian, Feng
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja208944x

The Carbon Electrode in Nonaqueous Li–O2 Cells
journal, December 2012

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
  • DOI: 10.1021/ja310258x

An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries
journal, January 2014

  • Radvanyi, Etienne; De Vito, Eric; Porcher, Willy
  • J. Anal. At. Spectrom., Vol. 29, Issue 6
  • DOI: 10.1039/c3ja50362c

Li + solvation in glyme–Li salt solvate ionic liquids
journal, January 2015

  • Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05943C

A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

In situ Raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres
journal, January 2011

  • Baylet, Alexandre; Marécot, Patrice; Duprez, Daniel
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 10
  • DOI: 10.1039/c0cp01331e

Works referencing / citing this record:

Waxberry-like hierarchical NiCo2O4-decorated carbon microspheres as efficient catalyst for Li-O2 batteries
journal, March 2019


Recent Advances in Metallic Glass Nanostructures: Synthesis Strategies and Electrocatalytic Applications
journal, December 2018

  • Li, Jinyang; Doubek, Gustavo; McMillon-Brown, Lyndsey
  • Advanced Materials, Vol. 31, Issue 7
  • DOI: 10.1002/adma.201802120

Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries †
journal, May 2019


Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries
journal, October 2016

  • Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12925