DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown

Abstract

Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. We focus on the intrinsic dielectric breakdown field of insulators—the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. Lastly, the models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.

Authors:
 [1];  [2];  [1]
  1. Univ. of Connecticut, Storrs, CT (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
Contributing Org.:
Univ. of Connecticut, Storrs, CT (United States)
OSTI Identifier:
1255076
Report Number(s):
LA-UR-15-26967
Journal ID: ISSN 0897-4756
Grant/Contract Number:  
N00014-10-1-0944; N00014-15-1-2665; 20140679PRD3; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 5; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Kim, Chiho, Pilania, Ghanshyam, and Ramprasad, Ramamurthy. From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown. United States: N. p., 2016. Web. doi:10.1021/acs.chemmater.5b04109.
Kim, Chiho, Pilania, Ghanshyam, & Ramprasad, Ramamurthy. From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown. United States. https://doi.org/10.1021/acs.chemmater.5b04109
Kim, Chiho, Pilania, Ghanshyam, and Ramprasad, Ramamurthy. Tue . "From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown". United States. https://doi.org/10.1021/acs.chemmater.5b04109. https://www.osti.gov/servlets/purl/1255076.
@article{osti_1255076,
title = {From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown},
author = {Kim, Chiho and Pilania, Ghanshyam and Ramprasad, Ramamurthy},
abstractNote = {Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. We focus on the intrinsic dielectric breakdown field of insulators—the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. Lastly, the models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.},
doi = {10.1021/acs.chemmater.5b04109},
journal = {Chemistry of Materials},
number = 5,
volume = 28,
place = {United States},
year = {Tue Feb 02 00:00:00 EST 2016},
month = {Tue Feb 02 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 148 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The quantum centennial
journal, December 2000


Newton's Discovery of Gravity
journal, March 1981


How Maxwell's equations came to light
journal, December 2014


Science and Phenomenology
journal, September 1969


The Landau Theory of Phase Transitions
book, August 1987

  • Tolédano, J. C.; Tolédano, P.
  • World Scientific Lecture Notes in Physics, Vol. 3
  • DOI: 10.1142/0215

Electric Breakdown of Solid and Liquid Insulators
journal, December 1937


Theory of Dielectric Breakdown*
journal, March 1943


The intrinsic electrical breakdown strength of insulators from first principles
journal, September 2012

  • Sun, Y.; Boggs, S. A.; Ramprasad, R.
  • Applied Physics Letters, Vol. 101, Issue 13
  • DOI: 10.1063/1.4755841

Probabilistic machine learning and artificial intelligence
journal, May 2015


Materials informatics: An emerging technology for materials development
journal, June 2009

  • LeSar, Richard
  • Statistical Analysis and Data Mining, Vol. 1, Issue 6
  • DOI: 10.1002/sam.10034

The Elements of Statistical Learning
book, January 2009


Predicting crystal structure by merging data mining with quantum mechanics
journal, July 2006

  • Fischer, Christopher C.; Tibbetts, Kevin J.; Morgan, Dane
  • Nature Materials, Vol. 5, Issue 8
  • DOI: 10.1038/nmat1691

“Property Phase Diagrams” for Compound Semiconductors through Data Mining
journal, January 2013

  • Srinivasan, Srikant; Rajan, Krishna
  • Materials, Vol. 6, Issue 1
  • DOI: 10.3390/ma6010279

Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO 2 Capture
journal, August 2014

  • Fernandez, Michael; Boyd, Peter G.; Daff, Thomas D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz501331m

Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

Ab initio Method for Calculating Electron-Phonon Scattering Times in Semiconductors: Application to GaAs and GaP
journal, December 2007


Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Ground State of the Electron Gas by a Stochastic Method
journal, August 1980


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

An introduction to kernel-based learning algorithms
journal, March 2001

  • Muller, K. -R.; Mika, S.; Ratsch, G.
  • IEEE Transactions on Neural Networks, Vol. 12, Issue 2
  • DOI: 10.1109/72.914517

Kernel methods in machine learning
journal, June 2008

  • Hofmann, Thomas; Schölkopf, Bernhard; Smola, Alexander J.
  • The Annals of Statistics, Vol. 36, Issue 3
  • DOI: 10.1214/009053607000000677

Compressive sensing as a paradigm for building physics models
journal, January 2013


Proposed universal relationship between dielectric breakdown and dielectric constant
conference, January 2002

  • McPherson, J.; Kim, J.; Shanware, A.
  • IEEE International Electron Devices Meeting, Digest. International Electron Devices Meeting,
  • DOI: 10.1109/IEDM.2002.1175919

Distilling Free-Form Natural Laws from Experimental Data
journal, April 2009


Works referencing / citing this record:

A universal strategy for the creation of machine learning-based atomistic force fields
journal, September 2017


Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition
journal, November 2019

  • Sutton, Christopher; Ghiringhelli, Luca M.; Yamamoto, Takenori
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0239-3

Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides
journal, April 2020

  • Mannodi-Kanakkithodi, Arun; Toriyama, Michael Y.; Sen, Fatih G.
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-020-0296-7

Finding New Perovskite Halides via Machine Learning
journal, April 2016

  • Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho
  • Frontiers in Materials, Vol. 3
  • DOI: 10.3389/fmats.2016.00019

Neural Network Analysis of Dynamic Fracture in a Layered Material
journal, January 2019

  • Rajak, Pankaj; Kalia, Rajiv K.; Nakano, Aiichiro
  • MRS Advances, Vol. 4, Issue 19
  • DOI: 10.1557/adv.2018.673

Learning physical descriptors for materials science by compressed sensing
journal, February 2017

  • Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre
  • New Journal of Physics, Vol. 19, Issue 2
  • DOI: 10.1088/1367-2630/aa57bf

Active learning for accelerated design of layered materials
journal, December 2018

  • Bassman, Lindsay; Rajak, Pankaj; Kalia, Rajiv K.
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0129-0

Importance of Feature Selection in Machine Learning and Adaptive Design for Materials
book, January 2018


Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Recent advances and applications of machine learning in solid-state materials science
journal, August 2019

  • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0221-0

Accelerated search for BaTiO 3 -based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning
journal, November 2016

  • Xue, Dezhen; Balachandran, Prasanna V.; Yuan, Ruihao
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 47
  • DOI: 10.1073/pnas.1607412113

Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators
journal, February 2019


From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO
journal, March 2019

  • Ouyang, Runhai; Ahmetcik, Emre; Carbogno, Christian
  • Journal of Physics: Materials, Vol. 2, Issue 2
  • DOI: 10.1088/2515-7639/ab077b

Machine learning properties of binary wurtzite superlattices
journal, January 2018


A hybrid organic-inorganic perovskite dataset
journal, May 2017

  • Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2017.57

High Energy Density Dielectrics Based on PVDF-Based Polymers
journal, April 2018


Materials Design in Digital Era: Challenges and Opportunities
journal, June 2019

  • Jain, Deepak; Dwadasi, Balarama Sridhar; Kumar, Dharmendr
  • Transactions of the Indian Institute of Metals, Vol. 72, Issue 8
  • DOI: 10.1007/s12666-019-01702-3

Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics
journal, April 2019


Formation enthalpies for transition metal alloys using machine learning
journal, June 2017


Physics-informed machine learning for inorganic scintillator discovery
journal, June 2018

  • Pilania, G.; McClellan, K. J.; Stanek, C. R.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5025819

Accurate interatomic force fields via machine learning with covariant kernels
journal, June 2017


A Critical Review of Machine Learning of Energy Materials
journal, January 2020


Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
journal, August 2018

  • Dimiduk, Dennis M.; Holm, Elizabeth A.; Niezgoda, Stephen R.
  • Integrating Materials and Manufacturing Innovation, Vol. 7, Issue 3
  • DOI: 10.1007/s40192-018-0117-8

ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
journal, December 2018


Uncovering structure-property relationships of materials by subgroup discovery
journal, January 2017

  • Goldsmith, Bryan R.; Boley, Mario; Vreeken, Jilles
  • New Journal of Physics, Vol. 19, Issue 1
  • DOI: 10.1088/1367-2630/aa57c2

Representation of compounds for machine-learning prediction of physical properties
text, January 2016


Functional Form of the Superconducting Critical Temperature from Machine Learning
text, January 2019


Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics
journal, April 2019


Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
journal, November 2019


Electronic Structure of Polyethylene: Role of Chemical, Morphological and Interfacial Complexity
journal, July 2017


Computational screening of organic polymer dielectrics for novel accelerator technologies
journal, June 2018


ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
journal, December 2018