DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

Abstract

Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

Authors:
 [1];  [2];  [3];  [1];  [1];  [2];  [4];  [1];  [1]
  1. California Institute of Technology, Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering.
  2. Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology.
  3. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering.
  4. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab., Berkeley, CA (United States). Materials Science Div. and Environmental Energy Technology Div.
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
National Science Foundation (NSF)
OSTI Identifier:
1214211
Grant/Contract Number:  
AC02-05CH11231; NSF-CHE-1335486
Resource Type:
Accepted Manuscript
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Volume: 1; Journal Issue: 4; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE

Citation Formats

Webb, Michael A., Jung, Yukyung, Pesko, Danielle M., Savoie, Brett M., Yamamoto, Umi, Coates, Geoffrey W., Balsara, Nitash P., Wang, Zhen -Gang, and Miller, III, Thomas F. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. United States: N. p., 2015. Web. doi:10.1021/acscentsci.5b00195.
Webb, Michael A., Jung, Yukyung, Pesko, Danielle M., Savoie, Brett M., Yamamoto, Umi, Coates, Geoffrey W., Balsara, Nitash P., Wang, Zhen -Gang, & Miller, III, Thomas F. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. United States. https://doi.org/10.1021/acscentsci.5b00195
Webb, Michael A., Jung, Yukyung, Pesko, Danielle M., Savoie, Brett M., Yamamoto, Umi, Coates, Geoffrey W., Balsara, Nitash P., Wang, Zhen -Gang, and Miller, III, Thomas F. Fri . "Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes". United States. https://doi.org/10.1021/acscentsci.5b00195. https://www.osti.gov/servlets/purl/1214211.
@article{osti_1214211,
title = {Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes},
author = {Webb, Michael A. and Jung, Yukyung and Pesko, Danielle M. and Savoie, Brett M. and Yamamoto, Umi and Coates, Geoffrey W. and Balsara, Nitash P. and Wang, Zhen -Gang and Miller, III, Thomas F.},
abstractNote = {Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.},
doi = {10.1021/acscentsci.5b00195},
journal = {ACS Central Science},
number = 4,
volume = 1,
place = {United States},
year = {Fri Jul 10 00:00:00 EDT 2015},
month = {Fri Jul 10 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 144 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Complexes of alkali metal ions with poly(ethylene oxide)
journal, November 1973


Structure and ion transport in polymer-salt complexes
journal, October 1981


Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations
journal, February 2006

  • Borodin, Oleg; Smith, Grant D.
  • Macromolecules, Vol. 39, Issue 4
  • DOI: 10.1021/ma052277v

Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide)
journal, September 1995

  • Müller‐Plathe, Florian; van Gunsteren, Wilfred F.
  • The Journal of Chemical Physics, Vol. 103, Issue 11
  • DOI: 10.1063/1.470611

Local structure and mobility of ions in polymer electrolytes: A molecular dynamics simulation study of the amorphous PEO x NaI system
journal, March 1996

  • Neyertz, Sylvie; Brown, David
  • The Journal of Chemical Physics, Vol. 104, Issue 10
  • DOI: 10.1063/1.471033

Molecular dynamics simulation of the polymer electrolyte poly(ethyleneoxide)∕LiClO4. I. Structural properties
journal, May 2005

  • Siqueira, Leonardo J. A.; Ribeiro, Mauro C. C.
  • The Journal of Chemical Physics, Vol. 122, Issue 19
  • DOI: 10.1063/1.1899643

Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4. II. Dynamical properties
journal, December 2006

  • Siqueira, Leonardo J. A.; Ribeiro, Mauro C. C.
  • The Journal of Chemical Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.2400221

Understanding the Lithium Transport within a Rouse-Based Model for a PEO/LiTFSI Polymer Electrolyte
journal, February 2010

  • Diddens, Diddo; Heuer, Andreas; Borodin, Oleg
  • Macromolecules, Vol. 43, Issue 4
  • DOI: 10.1021/ma901893h

Mechanisms of lithium transport in amorphous polyethylene oxide
journal, February 2005

  • Duan, Yuhua; Halley, J. W.; Curtiss, Larry
  • The Journal of Chemical Physics, Vol. 122, Issue 5
  • DOI: 10.1063/1.1839555

Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes: A molecular dynamics study
journal, December 2011


MD Simulations and Experimental Study of Structure, Dynamics, and Thermodynamics of Poly(ethylene oxide) and Its Oligomers
journal, June 2003

  • Borodin, Oleg; Douglas, Richard; Smith, Grant D.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 28
  • DOI: 10.1021/jp0275387

Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes
journal, May 2001


The Influence of Inert Oxide Fillers on Poly(ethylene oxide) and Amorphous Poly(ethylene oxide) Based Polymer Electrolytes
journal, September 2001

  • Johansson, Patrik; Ratner, Mark A.; Shriver, Duward F.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 37
  • DOI: 10.1021/jp010868r

High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers
journal, April 1998


Polymer electrolytes derived from dendritic polyether macromonomers
journal, June 2002


Performance limitations of polymer electrolytes based on ethylene oxide polymers
journal, August 2000


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Electrochemical Behavior of Lithium Electrolytes Based on New Polyether Networks
journal, July 1994

  • Alloin, F.; Sanchez, J. ‐Y.; Armand, M.
  • Journal of The Electrochemical Society, Vol. 141, Issue 7
  • DOI: 10.1149/1.2055026

Solid polymer electrolytes based on statistical poly (ethylene oxide-propylene oxide) copolymers
journal, October 1995


Ionic conductivity of polymer solid electrolyte prepared from poly[epichlorohydrin-co-(ethylene oxide)] of high ethylene oxide content
journal, January 2004

  • Ikeda, Y.; Masui, H.; Matoba, Y.
  • Journal of Applied Polymer Science, Vol. 95, Issue 1
  • DOI: 10.1002/app.20814

Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers
journal, January 2004

  • Schroers, Michael; Kokil, Akshay; Weder, Christoph
  • Journal of Applied Polymer Science, Vol. 93, Issue 6
  • DOI: 10.1002/app.20870

NMR and Conductivity Studies of Ethylene Oxide−Epichloridrine Copolymer Doped with LiClO 4
journal, May 1997

  • Wolfenson, A. E.; Torresi, R. M.; Bonagamba, T. J.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 18
  • DOI: 10.1021/jp961926p

Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries
journal, November 2013

  • Barteau, Katherine P.; Wolffs, Martin; Lynd, Nathaniel A.
  • Macromolecules, Vol. 46, Issue 22
  • DOI: 10.1021/ma401267w

Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO)
journal, March 2011


Lithium ion conductivity in polyoxyethylene/polyethylenimine blends
journal, March 2001


Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate
journal, December 1984

  • Watanabe, Masayoshi; Rikukawa, Masahiro; Sanui, Kohei
  • Macromolecules, Vol. 17, Issue 12
  • DOI: 10.1021/ma00142a078

Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate
journal, December 1984

  • Watanabe, Masayoshi; Togo, Makiko; Sanui, Kohei
  • Macromolecules, Vol. 17, Issue 12
  • DOI: 10.1021/ma00142a079

Complex formation and ionic conductivity of polyphosphazene solid electrolytes
journal, January 1986


Complex formation of polyethylenimine with sodium triflate and conductivity behavior of the complexes
journal, July 1986

  • Harris, C. S.; Shriver, D. F.; Ratner, M. A.
  • Macromolecules, Vol. 19, Issue 4
  • DOI: 10.1021/ma00158a009

Ionic conductivity in the poly(ethylene malonate)/lithium triflate system
journal, January 2001


Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes
journal, May 2004


Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes
journal, September 2010


Alternating Copolymerization of Epoxides and Cyclic Anhydrides:  An Improved Route to Aliphatic Polyesters
journal, September 2007

  • Jeske, Ryan C.; DiCiccio, Angela M.; Coates, Geoffrey W.
  • Journal of the American Chemical Society, Vol. 129, Issue 37
  • DOI: 10.1021/ja0737568

Ring-Opening Copolymerization of Maleic Anhydride with Epoxides: A Chain-Growth Approach to Unsaturated Polyesters
journal, July 2011

  • DiCiccio, Angela M.; Coates, Geoffrey W.
  • Journal of the American Chemical Society, Vol. 133, Issue 28
  • DOI: 10.1021/ja203520p

Poly(propylene succinate): A New Polymer Stereocomplex
journal, November 2014

  • Longo, Julie M.; DiCiccio, Angela M.; Coates, Geoffrey W.
  • Journal of the American Chemical Society, Vol. 136, Issue 45
  • DOI: 10.1021/ja509440g

Effect of molecular weight on conductivity of polymer electrolytes
journal, November 2011

  • Teran, Alexander A.; Tang, Maureen H.; Mullin, Scott A.
  • Solid State Ionics, Vol. 203, Issue 1
  • DOI: 10.1016/j.ssi.2011.09.021

Cation Transport in Polymer Electrolytes: A Microscopic Approach
journal, May 2007


Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes
journal, May 1999

  • Martin, Marcus G.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 103, Issue 21
  • DOI: 10.1021/jp984742e

Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes
journal, August 2000

  • Wick, Collin D.; Martin, Marcus G.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 104, Issue 33
  • DOI: 10.1021/jp001044x

Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes
journal, November 2004

  • Stubbs, John M.; Potoff, Jeffrey J.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 108, Issue 45
  • DOI: 10.1021/jp049459w

Application of TraPPE-UA force field for determination of vapor–liquid equilibria of carboxylate esters
journal, February 2006


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Implementing molecular dynamics on hybrid high performance computers – short range forces
journal, April 2011

  • Brown, W. Michael; Wang, Peng; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 182, Issue 4
  • DOI: 10.1016/j.cpc.2010.12.021

Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh
journal, March 2012

  • Brown, W. Michael; Kohlmeyer, Axel; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 183, Issue 3
  • DOI: 10.1016/j.cpc.2011.10.012

Polyphosphazene solid electrolytes
journal, October 1984

  • Blonsky, Peter M.; Shriver, D. F.; Austin, Paul
  • Journal of the American Chemical Society, Vol. 106, Issue 22
  • DOI: 10.1021/ja00334a071

High Li[sup +] Self-Diffusivity and Transport Number in Novel Electrolyte Solutions
journal, January 2001

  • Videa, Marcelo; Xu, Wu; Geil, Burkhard
  • Journal of The Electrochemical Society, Vol. 148, Issue 12
  • DOI: 10.1149/1.1415030

Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers
journal, January 2004

  • Schroers, Michael; Kokil, Akshay; Weder, Christoph
  • Journal of Applied Polymer Science, Vol. 93, Issue 6
  • DOI: 10.1002/app.20870

CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
journal, January 2009

  • Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.21367

Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes: A molecular dynamics study
journal, December 2011


Alternating Copolymerization of Epoxides and Cyclic Anhydrides:  An Improved Route to Aliphatic Polyesters
journal, September 2007

  • Jeske, Ryan C.; DiCiccio, Angela M.; Coates, Geoffrey W.
  • Journal of the American Chemical Society, Vol. 129, Issue 37
  • DOI: 10.1021/ja0737568

Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes
journal, November 2004

  • Stubbs, John M.; Potoff, Jeffrey J.; Siepmann, J. Ilja
  • The Journal of Physical Chemistry B, Vol. 108, Issue 45
  • DOI: 10.1021/jp049459w

Understanding the Lithium Transport within a Rouse-Based Model for a PEO/LiTFSI Polymer Electrolyte
journal, February 2010

  • Diddens, Diddo; Heuer, Andreas; Borodin, Oleg
  • Macromolecules, Vol. 43, Issue 4
  • DOI: 10.1021/ma901893h

Works referencing / citing this record:

Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries
journal, December 2018


Multivalent ion conduction in solid polymer systems
journal, January 2019

  • Schauser, Nicole S.; Seshadri, Ram; Segalman, Rachel A.
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00096d

Ion Transport beyond the Polyether Paradigm: Introducing Oligocarbonate Ion Transporters for Efficient Light-Emitting Electrochemical Cells
journal, June 2018

  • Mindemark, Jonas; Tang, Shi; Li, Hu
  • Advanced Functional Materials, Vol. 28, Issue 32
  • DOI: 10.1002/adfm.201801295

Designing polymers for advanced battery chemistries
journal, April 2019


Reentrant phase behavior and coexistence in asymmetric block copolymer electrolytes
journal, January 2018

  • Loo, Whitney S.; Jiang, Xi; Maslyn, Jacqueline A.
  • Soft Matter, Vol. 14, Issue 15
  • DOI: 10.1039/c8sm00175h

New frontiers for the materials genome initiative
journal, April 2019

  • de Pablo, Juan J.; Jackson, Nicholas E.; Webb, Michael A.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0173-4

Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte
journal, July 2018

  • Mackanic, David G.; Michaels, Wesley; Lee, Minah
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201800703

Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes
journal, January 2019

  • Dong, Ban Xuan; Bennington, Peter; Kambe, Yu
  • Molecular Systems Design & Engineering, Vol. 4, Issue 3
  • DOI: 10.1039/c9me00011a

Ion transport in polymeric ionic liquids: recent developments and open questions
journal, January 2019

  • Ganesan, Venkat
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00114f

Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes
journal, January 2018

  • Pesko, Danielle M.; Sawhney, Simar; Newman, John
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0231813jes

Charging toward improved lithium-ion polymer electrolytes: exploiting synergistic experimental and computational approaches to facilitate materials design
journal, January 2019

  • Ketkar, Priyanka M.; Shen, Kuan-Hsuan; Hall, Lisa M.
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00105g

Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters
journal, July 2018


Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries
journal, May 2019


Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations
journal, January 2019

  • Ebadi, Mahsa; Marchiori, Cleber; Mindemark, Jonas
  • Journal of Materials Chemistry A, Vol. 7, Issue 14
  • DOI: 10.1039/c8ta12147h

Forecasting linear aliphatic copolyester degradation through modular block design
journal, August 2016


Restricted Ion Transport by Plasticizing Side Chains in Polycarbonate-Based Solid Electrolytes
journal, January 2020


Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters
journal, July 2018