DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antenna coupled photonic wire lasers

Abstract

Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.

Authors:
 [1];  [1];  [2];  [3];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Long Wave Photonics LLC, Mountain View, CA (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1182968
Report Number(s):
SAND2014-15928J
Journal ID: ISSN 1094-4087; OPEXFF; 533364
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 23; Journal Issue: 13; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Kao, Tsung-Kao, Cai, Xiaowei, Lee, Alan W. M., Reno, John L., and Hu, Qing. Antenna coupled photonic wire lasers. United States: N. p., 2015. Web. doi:10.1364/OE.23.017091.
Kao, Tsung-Kao, Cai, Xiaowei, Lee, Alan W. M., Reno, John L., & Hu, Qing. Antenna coupled photonic wire lasers. United States. https://doi.org/10.1364/OE.23.017091
Kao, Tsung-Kao, Cai, Xiaowei, Lee, Alan W. M., Reno, John L., and Hu, Qing. Mon . "Antenna coupled photonic wire lasers". United States. https://doi.org/10.1364/OE.23.017091. https://www.osti.gov/servlets/purl/1182968.
@article{osti_1182968,
title = {Antenna coupled photonic wire lasers},
author = {Kao, Tsung-Kao and Cai, Xiaowei and Lee, Alan W. M. and Reno, John L. and Hu, Qing},
abstractNote = {Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.},
doi = {10.1364/OE.23.017091},
journal = {Optics Express},
number = 13,
volume = 23,
place = {United States},
year = {Mon Jun 22 00:00:00 EDT 2015},
month = {Mon Jun 22 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

GREAT: the SOFIA high-frequency heterodyne instrument
journal, May 2012


Demonstration of a spaser-based nanolaser
journal, August 2009

  • Noginov, M. A.; Zhu, G.; Belgrave, A. M.
  • Nature, Vol. 460, Issue 7259
  • DOI: 10.1038/nature08318

Ultrafast photonic crystal nanocavity laser
journal, July 2006

  • Altug, Hatice; Englund, Dirk; Vučković, Jelena
  • Nature Physics, Vol. 2, Issue 7
  • DOI: 10.1038/nphys343

Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures
journal, January 2012

  • Xu, Gangyi; Colombelli, Raffaele; Khanna, Suraj P.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1958

A terahertz pulse emitter monolithically integrated with a quantum cascade laser
journal, February 2011

  • Burghoff, David; Kao, Tsung-Yu; Ban, Dayan
  • Applied Physics Letters, Vol. 98, Issue 6
  • DOI: 10.1063/1.3553021

THz waveguide adapters for efficient radiation out-coupling from double metal THz QCLs
journal, January 2015

  • Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.
  • Optics Express, Vol. 23, Issue 4
  • DOI: 10.1364/oe.23.005190

Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range
journal, March 2014

  • Xu, Gangyi; Li, Lianhe; Isac, Nathalie
  • Applied Physics Letters, Vol. 104, Issue 9
  • DOI: 10.1063/1.4866661

Plasmon lasers at deep subwavelength scale
journal, August 2009

  • Oulton, Rupert F.; Sorger, Volker J.; Zentgraf, Thomas
  • Nature, Vol. 461, Issue 7264
  • DOI: 10.1038/nature08364

Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits
journal, June 2007


Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz
journal, April 2014

  • Bonzon, C.; Benea Chelmus, I. C.; Ohtani, K.
  • Applied Physics Letters, Vol. 104, Issue 16
  • DOI: 10.1063/1.4871369

Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions
journal, January 2009

  • Chassagneux, Y.; Colombelli, R.; Maineult, W.
  • Nature, Vol. 457, Issue 7226
  • DOI: 10.1038/nature07636

Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement
journal, September 2003

  • Williams, Benjamin S.; Kumar, Sushil; Callebaut, Hans
  • Applied Physics Letters, Vol. 83, Issue 11
  • DOI: 10.1063/1.1611642

Quantum Cascade Laser
journal, April 1994


Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers
journal, March 2010

  • Kao, Tsung-Yu; Hu, Qing; Reno, John L.
  • Applied Physics Letters, Vol. 96, Issue 10
  • DOI: 10.1063/1.3358134

Tuning a terahertz wire laser
journal, November 2009


Terahertz semiconductor-heterostructure laser
journal, May 2002

  • Köhler, Rüdeger; Tredicucci, Alessandro; Beltram, Fabio
  • Nature, Vol. 417, Issue 6885
  • DOI: 10.1038/417156a

Low-divergence single-mode terahertz quantum cascade laser
journal, September 2009


Lasing in metallic-coated nanocavities
journal, September 2007


Photonic-Wire Laser
journal, October 1995


Low divergence Terahertz photonic-wire laser
journal, January 2010

  • Amanti, Maria I.; Scalari, Giacomo; Castellano, Fabrizio
  • Optics Express, Vol. 18, Issue 6
  • DOI: 10.1364/OE.18.006390

Antenna Model for Wire Lasers
journal, May 2006


Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides
journal, January 2007

  • Kumar, Sushil; Williams, Benjamin S.; Qin, Qi
  • Optics Express, Vol. 15, Issue 1
  • DOI: 10.1364/OE.15.000113

Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers
journal, January 2012

  • Kao, Tsung-Yu; Hu, Qing; Reno, John L.
  • Optics Letters, Vol. 37, Issue 11
  • DOI: 10.1364/OL.37.002070

High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides
journal, January 2007

  • Wei Min Lee, Alan; Qin, Qi; Kumar, Sushil
  • Optics Letters, Vol. 32, Issue 19
  • DOI: 10.1364/OL.32.002840

Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae
journal, January 2009

  • Lloyd-Hughes, J.; Scalari, G.; van Kolck, A.
  • Optics Express, Vol. 17, Issue 20
  • DOI: 10.1364/OE.17.018387

Phase-Locked Arrays of Surface-Emitting Terahertz Quantum-Cascade Lasers
conference, January 2010


GREAT: the SOFIA high-frequency heterodyne instrument
text, January 2012


Works referencing / citing this record:

Continuous-wave highly-efficient low-divergence terahertz wire lasers
journal, March 2018


Unidirectional photonic wire laser
journal, August 2017


Phase-locked photonic wire lasers by π coupling
journal, December 2018


Compact and sensitive heterodyne receiver at 2.7 THz exploiting a quasi-optical HEB-QCL coupling scheme
journal, December 2019

  • Joint, F.; Gay, G.; Vigneron, P. -B.
  • Applied Physics Letters, Vol. 115, Issue 23
  • DOI: 10.1063/1.5116351

Photonic Engineering Technology for the Development of Terahertz Quantum Cascade Lasers
journal, July 2019

  • Zeng, Yongquan; Qiang, Bo; Wang, Qi Jie
  • Advanced Optical Materials, Vol. 8, Issue 3
  • DOI: 10.1002/adom.201900573

Continuous-wave highly-efficient low-divergence terahertz wire lasers.
text, January 2018

  • Biasco, Simone; Garrasi, Katia; Castellano, Fabrizio
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.27769