DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes

Abstract

Si-based anodes present a great promise for high energy density lithium-ion batteries. However, its commercialization is largely hindered by a grand challenge of a rapid capacity fade. Here, we demonstrate excellent cycling stability on a Si-Sn thin film electrode that outperforms pure Si or Sn counterpart under the similar conditions. Combined with the first-principles calculations, in situ transmission electron microscopy studies reveal a reduced volume expansion, increased conductivity, as well as dynamic rearrangement upon lithiation of the Si-Sn film. Here we attribute the improved lithiation kinetics to the formation of a conductive matrix that comprises a mosaic of nanostructured Sn, LiySn (specifically, Li7Sn2 develops around the lithiation potential of Si), and LixSi. This work provides an important advance in understanding the lithiation mechanism of Si-based anodes for next-generation lithium-ion batteries.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [3]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [1]
  1. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
  2. Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Nankai University, Tianjin (China)
  3. Univ. of California, Berkeley, CA (United States)
  4. Nankai University, Tianjin (China)
  5. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division; University of California, Berkeley, CA (United States)
  6. Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
2325983
Grant/Contract Number:  
AC02-05CH11231; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 35; Journal Issue: 6; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; li-ion battery; silicon anode; tin anode; lithiation kinetics; in situ TEM

Citation Formats

Yao, Kang, Li, Na, Li, Ning, Sivonxay, Eric, Du, Yaping, Persson, Kristin A., Su, Dong, and Tong, Wei. Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes. United States: N. p., 2023. Web. doi:10.1021/acs.chemmater.2c01867.
Yao, Kang, Li, Na, Li, Ning, Sivonxay, Eric, Du, Yaping, Persson, Kristin A., Su, Dong, & Tong, Wei. Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes. United States. https://doi.org/10.1021/acs.chemmater.2c01867
Yao, Kang, Li, Na, Li, Ning, Sivonxay, Eric, Du, Yaping, Persson, Kristin A., Su, Dong, and Tong, Wei. Tue . "Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes". United States. https://doi.org/10.1021/acs.chemmater.2c01867. https://www.osti.gov/servlets/purl/2325983.
@article{osti_2325983,
title = {Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes},
author = {Yao, Kang and Li, Na and Li, Ning and Sivonxay, Eric and Du, Yaping and Persson, Kristin A. and Su, Dong and Tong, Wei},
abstractNote = {Si-based anodes present a great promise for high energy density lithium-ion batteries. However, its commercialization is largely hindered by a grand challenge of a rapid capacity fade. Here, we demonstrate excellent cycling stability on a Si-Sn thin film electrode that outperforms pure Si or Sn counterpart under the similar conditions. Combined with the first-principles calculations, in situ transmission electron microscopy studies reveal a reduced volume expansion, increased conductivity, as well as dynamic rearrangement upon lithiation of the Si-Sn film. Here we attribute the improved lithiation kinetics to the formation of a conductive matrix that comprises a mosaic of nanostructured Sn, LiySn (specifically, Li7Sn2 develops around the lithiation potential of Si), and LixSi. This work provides an important advance in understanding the lithiation mechanism of Si-based anodes for next-generation lithium-ion batteries.},
doi = {10.1021/acs.chemmater.2c01867},
journal = {Chemistry of Materials},
number = 6,
volume = 35,
place = {United States},
year = {Tue Mar 07 00:00:00 EST 2023},
month = {Tue Mar 07 00:00:00 EST 2023}
}

Works referenced in this record:

Electrochemical Reaction of the Si[sub 1−x]Zn[sub x] Binary System with Li
journal, January 2005

  • Hatchard, T. D.; Obrovac, M. N.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 152, Issue 12
  • DOI: 10.1149/1.2098407

Structural Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling
journal, January 2014

  • Wang, Jiangwei; Fan, Feifei; Liu, Yang
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0041411jes

Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

Two-Phase Electrochemical Lithiation in Amorphous Silicon
journal, January 2013

  • Wang, Jiang Wei; He, Yu; Fan, Feifei
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl304379k

Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries
journal, September 2017


Facile Synthesis and Electrochemistry of Si-Sn-C Nanocomposites for High-Energy Li-Ion Batteries
journal, January 2017

  • Xu, Jing; Ling, Min; Terborg, Lydia
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0241707jes

Preparation of Si/Sn-Based Nanoparticles Composited with Carbon Fibers and Improved Electrochemical Performance as Anode Materials
journal, September 2014

  • Wang, Haiying; Huang, Hongqin; Chen, Lin
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 10
  • DOI: 10.1021/sc500290x

Structural investigation of SiSn/(reduced graphene oxide) nanocomposite powder for Li-ion battery anode applications
journal, November 2016

  • Kawasaki, Masahiro; Laokawee, Viratchara; Sarakonsri, Thapanee
  • Journal of Applied Physics, Vol. 120, Issue 20
  • DOI: 10.1063/1.4968540

Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
journal, May 2016

  • He, Kai; Zhang, Sen; Li, Jing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11441

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


All-Solid Lithium Electrodes with Mixed-Conductor Matrix
journal, January 1981

  • Boukamp, B. A.
  • Journal of The Electrochemical Society, Vol. 128, Issue 4
  • DOI: 10.1149/1.2127495

High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Scalable Production of the Silicon–Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes
journal, April 2017

  • Jin, Yan; Tan, Yingling; Hu, Xiaozhen
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 18
  • DOI: 10.1021/acsami.7b00366

In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Reaction of Li with Alloy Thin Films Studied by In Situ AFM
journal, January 2003

  • Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613668

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Strain Coupling of Conversion-type Fe 3 O 4 Thin Films for Lithium Ion Batteries
journal, May 2017

  • Hwang, Sooyeon; Meng, Qingping; Chen, Ping-Fan
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201703168

A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li–M (M = Si, Ge, Sn) Alloys
journal, September 2011

  • Chou, Chia-Yun; Kim, Hyunwoo; Hwang, Gyeong S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 40
  • DOI: 10.1021/jp205484v

Li Insertion in Ball Milled Si-Mn Alloys
journal, January 2018

  • Cao, Yidan; Bennett, J. Craig; Dunlap, R. A.
  • Journal of The Electrochemical Society, Vol. 165, Issue 9
  • DOI: 10.1149/2.0381809jes

In Situ Optical Observations of Particle Motion in Alloy Negative Electrodes for Li-Ion Batteries
journal, January 2006

  • Timmons, A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6
  • DOI: 10.1149/1.2194611

Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes
journal, March 2010

  • Chan, Candace K.; Patel, Reken N.; O’Connell, Michael J.
  • ACS Nano, Vol. 4, Issue 3
  • DOI: 10.1021/nn901409q

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


A Combinatorial Study of the Sn-Si-C System for Li-Ion Battery Applications
journal, January 2012

  • Al-Maghrabi, M. A.; Thorne, J. S.; Sanderson, R. J.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.075206jes

High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries
journal, January 2003

  • Maranchi, J. P.; Hepp, A. F.; Kumta, P. N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596918

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys
journal, January 2003

  • Beaulieu, L. Y.; Hewitt, K. C.; Turner, R. L.
  • Journal of The Electrochemical Society, Vol. 150, Issue 2
  • DOI: 10.1149/1.1530151

Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Phase-separated silicon–tin nanocomposites for high capacity negative electrodes in lithium ion batteries
journal, September 2012


Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries
journal, September 2012

  • Chockla, Aaron M.; Klavetter, Kyle C.; Mullins, C. Buddie
  • Chemistry of Materials, Vol. 24, Issue 19
  • DOI: 10.1021/cm301968b

Quantification of sampling uncertainty for molecular dynamics simulation: Time-dependent diffusion coefficient in simple fluids
journal, December 2015

  • Kim, Changho; Borodin, Oleg; Karniadakis, George Em
  • Journal of Computational Physics, Vol. 302
  • DOI: 10.1016/j.jcp.2015.09.021

Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries
journal, July 2009

  • Key, Baris; Bhattacharyya, Rangeet; Morcrette, Mathieu
  • Journal of the American Chemical Society, Vol. 131, Issue 26
  • DOI: 10.1021/ja8086278

Chemical Reduction Synthesis and Electrochemistry of Si–Sn Nanocomposites as High-Capacity Anodes for Li-Ion Batteries
journal, August 2018


Study of the Electrochemical Performance of Sputtered Si[sub 1−x]Sn[sub x] Films
journal, January 2004

  • Hatchard, T. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1790533

In Situ TEM on the Reversibility of Nanosized Sn Anodes during the Electrochemical Reaction
journal, July 2014

  • Li, Qianqian; Wang, Peng; Feng, Qiong
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm5009448

High-Capacity and Highly Reversible Silicon-Tin Hybrid Anode for Solid-State Lithium-Ion Batteries
journal, November 2015

  • Whiteley, Justin M.; Kim, Ji Woo; Piper, Daniela Molina
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0701602jes

Combinatorial Investigations of Si-M (M = Cr + Ni, Fe, Mn) Thin Film Negative Electrode Materials
journal, January 2005

  • Fleischauer, M. D.; Topple, J. M.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 2
  • DOI: 10.1149/1.1850395

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling
journal, January 2013