DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Wed Nov 13 00:00:00 EST 2024

Title: Structural study of hcp and liquid iron under shock compression up to 275 GPa

Abstract

Here we combine nanosecond laser shock compression with in situ picosecond x-ray diffraction to provide structural data on iron up to 275 GPa. We constrain the extent of hcp-liquid coexistence, the onset of total melt, and the structure within the liquid phase. Our results indicate that iron, under shock compression, melts completely by 258(8) GPa. A coordination number analysis indicates that iron is a simple liquid at these pressure-temperature conditions. We also perform texture analysis between the ambient body-centered-cubic (bcc) α, and the hexagonal-closed-packed (hcp) high-pressure ε-phase. We rule out the Rong-Dunlop orientation relationship (OR) between the α and ε - phase s. However, we cannot distinguish between three other closely related ORs: Burger's, Mao-Bassett-Takahashi, and Potter's OR. The solid-liquid coexistence region is constrained from a melt onset pressure of 225(3) GPa from previously published sound speed measurements and full melt [246.5(1.8)–258(8) GPa] from x-ray diffraction measurements, with an associated maximum latent heat of melting of 623 J/g. This value is lower than recently reported theoretical estimates and suggests that the contribution to the earth's geodynamo energy budget from heat release due to freezing of the inner core is smaller than previously thought. Melt pressures for these nanosecond shock experimentsmore » are consistent with gas gun shock experiments that last for microseconds, indicating that the melt transition occurs rapidly.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [1];  [3];  [3]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  2. Gordon and Betty Moore Foundation, Palo Alto, CA (United States)
  3. Johns Hopkins University, Baltimore, MD (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
2318774
Report Number(s):
LLNL-JRNL-860905
Journal ID: ISSN 2469-9950; 1072601
Grant/Contract Number:  
AC52-07NA27344; NA0003957; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B
Additional Journal Information:
Journal Volume: 108; Journal Issue: 18; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; liquid-solid phase transition; phase transitions; shock waves; solid-solid transformations; laser ablation; x-ray diffraction

Citation Formats

Singh, Saransh, Briggs, Richard, Gorman, Martin G., Benedict, Lorin X., Wu, Christine J., Hamel, Sebastien, Coleman, Amy L., Coppari, Federica, Fernandez-Pañella, Amalia, McGuire, Christopher, Sims, Melissa, Wicks, June K., Eggert, Jon H., Fratanduono, Dayne E., and Smith, Raymond F. Structural study of hcp and liquid iron under shock compression up to 275 GPa. United States: N. p., 2023. Web. doi:10.1103/physrevb.108.184104.
Singh, Saransh, Briggs, Richard, Gorman, Martin G., Benedict, Lorin X., Wu, Christine J., Hamel, Sebastien, Coleman, Amy L., Coppari, Federica, Fernandez-Pañella, Amalia, McGuire, Christopher, Sims, Melissa, Wicks, June K., Eggert, Jon H., Fratanduono, Dayne E., & Smith, Raymond F. Structural study of hcp and liquid iron under shock compression up to 275 GPa. United States. https://doi.org/10.1103/physrevb.108.184104
Singh, Saransh, Briggs, Richard, Gorman, Martin G., Benedict, Lorin X., Wu, Christine J., Hamel, Sebastien, Coleman, Amy L., Coppari, Federica, Fernandez-Pañella, Amalia, McGuire, Christopher, Sims, Melissa, Wicks, June K., Eggert, Jon H., Fratanduono, Dayne E., and Smith, Raymond F. Mon . "Structural study of hcp and liquid iron under shock compression up to 275 GPa". United States. https://doi.org/10.1103/physrevb.108.184104.
@article{osti_2318774,
title = {Structural study of hcp and liquid iron under shock compression up to 275 GPa},
author = {Singh, Saransh and Briggs, Richard and Gorman, Martin G. and Benedict, Lorin X. and Wu, Christine J. and Hamel, Sebastien and Coleman, Amy L. and Coppari, Federica and Fernandez-Pañella, Amalia and McGuire, Christopher and Sims, Melissa and Wicks, June K. and Eggert, Jon H. and Fratanduono, Dayne E. and Smith, Raymond F.},
abstractNote = {Here we combine nanosecond laser shock compression with in situ picosecond x-ray diffraction to provide structural data on iron up to 275 GPa. We constrain the extent of hcp-liquid coexistence, the onset of total melt, and the structure within the liquid phase. Our results indicate that iron, under shock compression, melts completely by 258(8) GPa. A coordination number analysis indicates that iron is a simple liquid at these pressure-temperature conditions. We also perform texture analysis between the ambient body-centered-cubic (bcc) α, and the hexagonal-closed-packed (hcp) high-pressure ε-phase. We rule out the Rong-Dunlop orientation relationship (OR) between the α and ε - phase s. However, we cannot distinguish between three other closely related ORs: Burger's, Mao-Bassett-Takahashi, and Potter's OR. The solid-liquid coexistence region is constrained from a melt onset pressure of 225(3) GPa from previously published sound speed measurements and full melt [246.5(1.8)–258(8) GPa] from x-ray diffraction measurements, with an associated maximum latent heat of melting of 623 J/g. This value is lower than recently reported theoretical estimates and suggests that the contribution to the earth's geodynamo energy budget from heat release due to freezing of the inner core is smaller than previously thought. Melt pressures for these nanosecond shock experiments are consistent with gas gun shock experiments that last for microseconds, indicating that the melt transition occurs rapidly.},
doi = {10.1103/physrevb.108.184104},
journal = {Physical Review. B},
number = 18,
volume = 108,
place = {United States},
year = {Mon Nov 13 00:00:00 EST 2023},
month = {Mon Nov 13 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 13, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Melting curve of iron to 290 GPa determined in a resistance-heated diamond-anvil cell
journal, March 2019


The crystallography of secondary carbide precipitation in high speed steel
journal, October 1984


Polymorphism of Iron at High Pressure
journal, March 1956

  • Bancroft, Dennison; Peterson, Eric L.; Minshall, Stanley
  • Journal of Applied Physics, Vol. 27, Issue 3
  • DOI: 10.1063/1.1722359

The laser shock station in the dynamic compression sector. I
journal, May 2019

  • Wang, Xiaoming; Rigg, Paulo; Sethian, John
  • Review of Scientific Instruments, Vol. 90, Issue 5
  • DOI: 10.1063/1.5088367

High pressure melt curve of iron from atom-in-jellium calculations
journal, April 2020


Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al
journal, December 2005

  • Celliers, P. M.; Collins, G. W.; Hicks, D. G.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2140077

Wide-ranged multiphase equation of state for iron and model variations addressing uncertainties in high-pressure melting
journal, July 2023


Quantitative measurements of density in shock-compressed silver up to 330 GPa using x-ray diffraction
journal, January 2022

  • Coleman, Amy L.; Singh, Saransh; Vennari, Cara E.
  • Journal of Applied Physics, Vol. 131, Issue 1
  • DOI: 10.1063/5.0072208

Shock-wave experiments at threefold compression
journal, March 1984


Comparison between mechanisms and microstructures of αγ, γε , and αεα phase transitions in iron
journal, March 2023


Microstructural effects and mechanism of bcc-hcp-bcc transformations in polycrystalline iron
journal, September 2020


Shock temperatures and melting of iron at Earth core conditions
journal, June 1993


Experimental melting curve of iron revisited
journal, October 1997

  • Anderson, Orson L.; Duba, Al
  • Journal of Geophysical Research: Solid Earth, Vol. 102, Issue B10
  • DOI: 10.1029/97JB01641

Equation of State of Liquid Iron under Extreme Conditions
journal, April 2020


Liquid X-ray scattering with a pink-spectrum undulator
journal, December 2013


Equation of state of iron under core conditions of large rocky exoplanets
journal, April 2018


Shock-induced melting of [100] lithium fluoride: Sound speed and Hugoniot measurements to 230 GPa
journal, January 2023


Hugoniot data for iron
journal, November 2000

  • Brown, J. M.; Fritz, J. N.; Hixson, R. S.
  • Journal of Applied Physics, Vol. 88, Issue 9
  • DOI: 10.1063/1.1319320

Explosive laboratory devices for shock wave compression studies
journal, May 1996


Quantitative analysis of diffraction by liquids using a pink-spectrum X-ray source
journal, May 2022

  • Singh, Saransh; Coleman, Amy L.; Zhang, Shuai
  • Journal of Synchrotron Radiation, Vol. 29, Issue 4
  • DOI: 10.1107/S1600577522004076

On cooling of the Earth's core
journal, January 1997

  • Labrosse, Stéphane; Poirier, Jean-Paul; Le Mouël, Jean-Louis
  • Physics of the Earth and Planetary Interiors, Vol. 99, Issue 1-2
  • DOI: 10.1016/S0031-9201(96)03207-4

Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar
journal, June 1978

  • Mao, H. K.; Bell, P. M.; Shaner, J. W.
  • Journal of Applied Physics, Vol. 49, Issue 6
  • DOI: 10.1063/1.325277

Melting of iron at the physical conditions of the Earth's core
journal, January 2004


In Situ X-Ray Study of Thermal Expansion and Phase Transition of Iron at Multimegabar Pressure
journal, February 2000


Hysteresis in the high pressure transformation of bcc‐ to hcp‐iron
journal, April 1991

  • Taylor, R. D.; Pasternak, M. P.; Jeanloz, R.
  • Journal of Applied Physics, Vol. 69, Issue 8
  • DOI: 10.1063/1.348779

Shock wave study of the α ⇄ ε phase transition in iron
journal, November 1974

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 45, Issue 11
  • DOI: 10.1063/1.1663148

Collective motion in hcp-Fe at Earth’s inner core conditions
journal, October 2023

  • Zhang, Youjun; Wang, Yong; Huang, Yuqian
  • Proceedings of the National Academy of Sciences, Vol. 120, Issue 41
  • DOI: 10.1073/pnas.2309952120

Efficient analytical approach for high-pressure melting properties of iron
journal, March 2021


High-pressure nanocrystalline structure of a shock-compressed single crystal of iron
journal, December 2008

  • Hawreliak, James A.; Kalantar, Daniel H.; Stölken, James S.
  • Physical Review B, Vol. 78, Issue 22
  • DOI: 10.1103/PhysRevB.78.220101

Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar
journal, January 1967

  • Mao, Ho‐Kwang; Bassett, William A.; Takahashi, Taro
  • Journal of Applied Physics, Vol. 38, Issue 1
  • DOI: 10.1063/1.1708965

Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo
journal, August 2020


Melting of compressed iron by monitoring atomic dynamics
journal, January 2013

  • Jackson, Jennifer M.; Sturhahn, Wolfgang; Lerche, Michael
  • Earth and Planetary Science Letters, Vol. 362
  • DOI: 10.1016/j.epsl.2012.11.048

Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa
journal, June 1986

  • Brown, J. Michael; McQueen, Robert G.
  • Journal of Geophysical Research: Solid Earth, Vol. 91, Issue B7
  • DOI: 10.1029/JB091iB07p07485

Discrete spherical harmonic functions for texture representation and analysis
journal, September 2020

  • Singh, Saransh; Boyce, Donald E.; Bernier, Joel V.
  • Journal of Applied Crystallography, Vol. 53, Issue 5
  • DOI: 10.1107/S1600576720011097

Melting properties from ab initio free energy calculations: Iron at the Earth's inner-core boundary
journal, December 2018


Measuring the melting curve of iron at super-Earth core conditions
journal, January 2022

  • Kraus, Richard G.; Hemley, Russell J.; Ali, Suzanne J.
  • Science, Vol. 375, Issue 6577
  • DOI: 10.1126/science.abm1472

Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution
journal, May 2016

  • Foley, Bradford J.; Driscoll, Peter E.
  • Geochemistry, Geophysics, Geosystems, Vol. 17, Issue 5
  • DOI: 10.1002/2015GC006210

Quasi– Ab Initio Molecular Dynamic Study of Fe Melting
journal, April 2000


Solving Controversies on the Iron Phase Diagram Under High Pressure
journal, October 2018

  • Morard, Guillaume; Boccato, Silvia; Rosa, Angelika D.
  • Geophysical Research Letters, Vol. 45, Issue 20
  • DOI: 10.1029/2018GL079950

Structural Transformation and Melting in Gold Shock Compressed to 355 GPa
journal, July 2019


The structure, morphology and orientation relationship of V3N in α-vanadium
journal, May 1973


Time-dependence of the alpha to epsilon phase transformation in iron
journal, December 2013

  • Smith, R. F.; Eggert, J. H.; Swift, D. C.
  • Journal of Applied Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.4839655

Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions
journal, August 2022

  • Sims, Melissa; Briggs, Richard; Volz, Travis J.
  • Journal of Applied Physics, Vol. 132, Issue 7
  • DOI: 10.1063/5.0088607

Pole Figure Inversion Using Finite Elements Over Rodrigues Space
journal, January 2002

  • Barton, Nathan R.; Boyce, Donald E.; Dawson, Paul R.
  • Textures and Microstructures, Vol. 35, Issue 2
  • DOI: 10.1080/073033002100000182

Practical uncertainty reduction and quantification in shock physics measurements
journal, April 2015

  • Akin, M. C.; Nguyen, J. H.
  • Review of Scientific Instruments, Vol. 86, Issue 4
  • DOI: 10.1063/1.4917555

Crystal Structure and Melting of Fe Shock Compressed to 273 GPa: In Situ X-Ray Diffraction
journal, November 2020


Measurement of Body-Centered Cubic Gold and Melting under Shock Compression
journal, July 2019


Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity
journal, January 2019


Shock-Wave Compressions of Twenty-Seven Metals. Equations of State of Metals
journal, October 1957

  • Walsh, John M.; Rice, Melvin H.; McQueen, Robert G.
  • Physical Review, Vol. 108, Issue 2
  • DOI: 10.1103/PhysRev.108.196

Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
journal, October 2016

  • Davis, Jean-Paul; Knudson, Marcus D.; Shulenburger, Luke
  • Journal of Applied Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.4965869

Thermal evolution of the core with a high thermal conductivity
journal, October 2015


A novel optimization-based pole-figure inversion method: comparison with WIMV and maximum entropy methods
journal, September 2006

  • Bernier, Joel V.; Miller, Matthew P.; Boyce, Donald E.
  • Journal of Applied Crystallography, Vol. 39, Issue 5
  • DOI: 10.1107/S002188980602468X

Effect of non-hydrostaticity on the α-ε transition of iron
journal, December 1990


Shock compression of two iron-silicon alloys to 2.7 megabars
journal, July 1966


Quantum molecular dynamics of warm dense iron and a five-phase equation of state
journal, May 2018


Shock adiabatic curves of metals: New data, statistical analysis, and general laws
journal, January 1981

  • Al'tshuler, L. V.; Bakanova, A. A.; Dudoladov, I. P.
  • Journal of Applied Mechanics and Technical Physics, Vol. 22, Issue 2
  • DOI: 10.1007/BF00907938

The thermodynamics of melting of simple substances
journal, May 1975


Direct measurements of the α-ϵ transition stress and kinetics for shocked iron
journal, May 2009

  • Jensen, B. J.; Gray, G. T.; Hixson, R. S.
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3110188

Quasihydrostatic Equation of State of Iron above 2 Mbar
journal, November 2006


Foundations of VISAR analysis.
report, June 2006


α‐phase Hugoniot of iron
journal, June 1975

  • Barker, L. M.
  • Journal of Applied Physics, Vol. 46, Issue 6
  • DOI: 10.1063/1.321931

Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting
journal, February 2023

  • Renganathan, Pritha; Sharma, Surinder M.; Turneaure, Stefan J.
  • Science Advances, Vol. 9, Issue 8
  • DOI: 10.1126/sciadv.ade5745

Two-step nucleation of the Earth’s inner core
journal, January 2022

  • Sun, Yang; Zhang, Feng; Mendelev, Mikhail I.
  • Proceedings of the National Academy of Sciences, Vol. 119, Issue 2
  • DOI: 10.1073/pnas.2113059119

Light elements in the Earth’s core
journal, August 2021

  • Hirose, Kei; Wood, Bernard; Vočadlo, Lidunka
  • Nature Reviews Earth & Environment, Vol. 2, Issue 9
  • DOI: 10.1038/s43017-021-00203-6

Preliminary reference Earth model
journal, June 1981


High-pressure alloying of potassium and iron: Radioactivity in the Earth's core?: RADIOACTIVITY IN THE EARTH'S CORE?
journal, December 2003

  • Lee, Kanani K. M.; Jeanloz, Raymond
  • Geophysical Research Letters, Vol. 30, Issue 23
  • DOI: 10.1029/2003GL018515

Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction
journal, April 2013


Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars
journal, July 1960

  • McQueen, R. G.; Marsh, S. P.
  • Journal of Applied Physics, Vol. 31, Issue 7
  • DOI: 10.1063/1.1735815

`Pink'-beam X-ray powder diffraction profile and its use in Rietveld refinement
journal, February 2021

  • Von Dreele, Robert B.; Clarke, Samantha M.; Walsh, James P. S.
  • Journal of Applied Crystallography, Vol. 54, Issue 1
  • DOI: 10.1107/S1600576720014624

Melting, thermal expansion, and phase transitions of iron at high pressures
journal, January 1990

  • Boehler, R.; von Bargen, N.; Chopelas, A.
  • Journal of Geophysical Research, Vol. 95, Issue B13
  • DOI: 10.1029/JB095iB13p21731

Mechanism of the α ε phase transformation in iron
journal, May 2015


Melting of iron at the Earth's core conditions by molecular dynamics simulation
journal, September 2011

  • Wu, Y. N.; Wang, D. M.; Huang, Y. S.
  • AIP Advances, Vol. 1, Issue 3
  • DOI: 10.1063/1.3624736

Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
journal, July 2014

  • Rigg, P. A.; Knudson, M. D.; Scharff, R. J.
  • Journal of Applied Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.4890714

HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7