DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries

Abstract

P2-Na0.67Ni0.33Mn0.67O2 represents a promising cathode for Na-ion batteries, but it suffers from severe structural degradation upon storing in a humid atmosphere and cycling at a high cutoff voltage. Here we propose an in situ construction to achieve simultaneous material synthesis and Mg/Sn cosubstitution of Na0.67Ni0.33Mn0.67O2 via one-pot solid-state sintering. Here, the materials exhibit superior structural reversibility and moisture insensitivity. In-operando XRD reveals an essential correlation between cycling stability and phase reversibility, whereas Mg substitution suppressed the P2–O2 phase transition by forming a new Z phase, and Mg/Sn cosubstitution enhanced the P2–Z transition reversibility benefiting from strong Sn–O bonds. DFT calculations disclosed high chemical tolerance to moisture, as the adsorption energy to H2O was lower than that of the pure Na0.67Ni0.33Mn0.67O2. A representative Na0.67Ni0.23Mg0.1Mn0.65Sn0.02O2 cathode exhibits high reversible capacities of 123 mAh g–1 (10 mA g–1), 110 mAh g–1 (200 mA g–1), and 100 mAh g–1 (500 mA g–1) and a high capacity retention of 80% (500 mA g–1, 500 cycles).

Authors:
 [1];  [2]; ORCiD logo [3];  [4];  [5];  [6];  [1];  [1];  [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [7]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1]
  1. Shanghai Jiao Tong Univ. (China)
  2. Nanjing Univ. of Information Science and Technology (China). Key Lab. for Soft Chemistry and Functional Materials
  3. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  4. Argonne National Laboratory (ANL), Argonne, IL (United States)
  5. Beijing Institute of Technology (China)
  6. Shanghai SodaEn New Energy Technology (China)
  7. City Univ. of Hong Kong, Kowloon (Hong Kong)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
2310287
Grant/Contract Number:  
AC02-06CH11357; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 23; Journal Issue: 5; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; P2-type cathode; solid-state synthesis; cosubstitution; reversible phase transition; sodium-ion batteries

Citation Formats

Yuan, Siqi, Yu, Lei, Qian, Guannan, Xie, Yingying, Guo, Penghui, Cui, Guijia, Ma, Jun, Ren, Xiangyu, Xu, Zhixin, Lee, Sang-Jun, Lee, Jun-Sik, Liu, Yijin, Ren, Yang, Li, Linsen, Tan, Guoqiang, and Liao, Xiaozhen. P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries. United States: N. p., 2023. Web. doi:10.1021/acs.nanolett.2c04465.
Yuan, Siqi, Yu, Lei, Qian, Guannan, Xie, Yingying, Guo, Penghui, Cui, Guijia, Ma, Jun, Ren, Xiangyu, Xu, Zhixin, Lee, Sang-Jun, Lee, Jun-Sik, Liu, Yijin, Ren, Yang, Li, Linsen, Tan, Guoqiang, & Liao, Xiaozhen. P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries. United States. https://doi.org/10.1021/acs.nanolett.2c04465
Yuan, Siqi, Yu, Lei, Qian, Guannan, Xie, Yingying, Guo, Penghui, Cui, Guijia, Ma, Jun, Ren, Xiangyu, Xu, Zhixin, Lee, Sang-Jun, Lee, Jun-Sik, Liu, Yijin, Ren, Yang, Li, Linsen, Tan, Guoqiang, and Liao, Xiaozhen. Wed . "P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries". United States. https://doi.org/10.1021/acs.nanolett.2c04465. https://www.osti.gov/servlets/purl/2310287.
@article{osti_2310287,
title = {P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries},
author = {Yuan, Siqi and Yu, Lei and Qian, Guannan and Xie, Yingying and Guo, Penghui and Cui, Guijia and Ma, Jun and Ren, Xiangyu and Xu, Zhixin and Lee, Sang-Jun and Lee, Jun-Sik and Liu, Yijin and Ren, Yang and Li, Linsen and Tan, Guoqiang and Liao, Xiaozhen},
abstractNote = {P2-Na0.67Ni0.33Mn0.67O2 represents a promising cathode for Na-ion batteries, but it suffers from severe structural degradation upon storing in a humid atmosphere and cycling at a high cutoff voltage. Here we propose an in situ construction to achieve simultaneous material synthesis and Mg/Sn cosubstitution of Na0.67Ni0.33Mn0.67O2 via one-pot solid-state sintering. Here, the materials exhibit superior structural reversibility and moisture insensitivity. In-operando XRD reveals an essential correlation between cycling stability and phase reversibility, whereas Mg substitution suppressed the P2–O2 phase transition by forming a new Z phase, and Mg/Sn cosubstitution enhanced the P2–Z transition reversibility benefiting from strong Sn–O bonds. DFT calculations disclosed high chemical tolerance to moisture, as the adsorption energy to H2O was lower than that of the pure Na0.67Ni0.33Mn0.67O2. A representative Na0.67Ni0.23Mg0.1Mn0.65Sn0.02O2 cathode exhibits high reversible capacities of 123 mAh g–1 (10 mA g–1), 110 mAh g–1 (200 mA g–1), and 100 mAh g–1 (500 mA g–1) and a high capacity retention of 80% (500 mA g–1, 500 cycles).},
doi = {10.1021/acs.nanolett.2c04465},
journal = {Nano Letters},
number = 5,
volume = 23,
place = {United States},
year = {Wed Feb 22 00:00:00 EST 2023},
month = {Wed Feb 22 00:00:00 EST 2023}
}

Works referenced in this record:

Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes
journal, March 2020

  • Zhao, Chenglong; Yao, Zhenpeng; Wang, Qidi
  • Journal of the American Chemical Society, Vol. 142, Issue 12
  • DOI: 10.1021/jacs.9b13572

Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016

  • Wang, Peng-Fei; You, Ya; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201602202

A Review of Degradation Mechanisms and Recent Achievements for Ni‐Rich Cathode‐Based Li‐Ion Batteries
journal, November 2021

  • Jiang, Ming; Danilov, Dmitri L.; Eichel, Rüdiger‐A.
  • Advanced Energy Materials, Vol. 11, Issue 48
  • DOI: 10.1002/aenm.202103005

Role of Lithium Doping in P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 for Sodium-Ion Batteries
journal, June 2021


Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li 1 - x Co 1/3 Ni 1/3 Mn 1/3 O 2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy
journal, December 2005

  • Yoon, Won-Sub; Balasubramanian, Mahalingam; Chung, Kyung Yoon
  • Journal of the American Chemical Society, Vol. 127, Issue 49
  • DOI: 10.1021/ja0530568

Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system
journal, August 1994


Comprehensive Review of P2-Type Na 2/3 Ni 1/3 Mn 2/3 O 2 , a Potential Cathode for Practical Application of Na-Ion Batteries
journal, May 2019

  • Zhang, Jiaolong; Wang, Wenhui; Wang, Wei
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 25
  • DOI: 10.1021/acsami.9b03937

Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes
journal, January 2022

  • Fu, Hongwei; Wang, Yun-Peng; Fan, Guozheng
  • Chemical Science, Vol. 13, Issue 3
  • DOI: 10.1039/D1SC05715D

Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling
journal, June 2022


Electrochemistry and Solid‐State Chemistry of NaMeO 2 (Me = 3d Transition Metals)
journal, June 2018

  • Kubota, Kei; Kumakura, Shinichi; Yoda, Yusuke
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703415

Vitalization of P2–Na2/3Ni1/3Mn2/3O2 at high-voltage cyclability via combined structural modulation for sodium-ion batteries
journal, August 2020


NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density
journal, April 2019


Redox Mechanism in Na-Ion Battery Cathodes Probed by Advanced Soft X-Ray Spectroscopy
journal, September 2020


Prussian White Hierarchical Nanotubes with Surface‐Controlled Charge Storage for Sodium‐Ion Batteries
journal, February 2019

  • Ren, Wenhao; Zhu, Zixuan; Qin, Mingsheng
  • Advanced Functional Materials, Vol. 29, Issue 15
  • DOI: 10.1002/adfm.201806405

Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2‐Type Manganese‐Rich Sodium Cathodes
journal, October 2021


Prussian Blue@C Composite as an Ultrahigh-Rate and Long-Life Sodium-Ion Battery Cathode
journal, May 2016

  • Jiang, Yinzhu; Yu, Shenglan; Wang, Baoqi
  • Advanced Functional Materials, Vol. 26, Issue 29
  • DOI: 10.1002/adfm.201600747

Direction for Commercialization of O3-Type Layered Cathodes for Sodium-Ion Batteries
journal, April 2020


Water-Stable Cathode for High Rate Na-Ion Batteries
journal, March 2020

  • Zhang, Yi; Wu, Miaomiao; Teng, Wei
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 13
  • DOI: 10.1021/acsami.0c00386

Improved Cycling Performance of P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 Based on Sn Substitution Combined with Polypyrrole Coating
journal, January 2021

  • Yuan, Siqi; Qi, Jizhen; Jiang, Meidan
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 3
  • DOI: 10.1021/acsami.0c17080

Transition‐Metal Vacancy Manufacturing and Sodium‐Site Doping Enable a High‐Performance Layered Oxide Cathode through Cationic and Anionic Redox Chemistry
journal, September 2021

  • Shen, Qiuyu; Liu, Yongchang; Zhao, Xudong
  • Advanced Functional Materials, Vol. 31, Issue 51
  • DOI: 10.1002/adfm.202106923

Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries
journal, February 2022

  • Cheng, Zhiwei; Zhao, Bin; Guo, Yu‐Jie
  • Advanced Energy Materials, Vol. 12, Issue 14
  • DOI: 10.1002/aenm.202103461

P2–Na 2/3 Ni 1/3 Mn 5/9 Al 1/9 O 2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanism via Graphene Connection
journal, August 2016

  • Zhang, Xiao-Hua; Pang, Wei-Lin; Wan, Fang
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 32
  • DOI: 10.1021/acsami.6b03944

Nature of the “Z”-phase in layered Na-ion battery cathodes
journal, January 2019

  • Somerville, James W.; Sobkowiak, Adam; Tapia-Ruiz, Nuria
  • Energy & Environmental Science, Vol. 12, Issue 7
  • DOI: 10.1039/C8EE02991A

Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance
journal, November 2017


Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries
journal, September 2020


Moisture exposed layered oxide electrodes as Na-ion battery cathodes
journal, January 2016

  • Han, M. H.; Sharma, N.; Gonzalo, E.
  • Journal of Materials Chemistry A, Vol. 4, Issue 48
  • DOI: 10.1039/C6TA07950D

Layer-by-Layer Na 3 V 2 (PO 4 ) 3 Embedded in Reduced Graphene Oxide as Superior Rate and Ultralong-Life Sodium-Ion Battery Cathode
journal, May 2016


Recent Progress in Rechargeable Sodium‐Ion Batteries: toward High‐Power Applications
journal, February 2019


A Superlattice‐Stabilized Layered Oxide Cathode for Sodium‐Ion Batteries
journal, April 2020


Exploring Oxygen Activity in the High Energy P2-Type Na 0.78 Ni 0.23 Mn 0.69 O 2 Cathode Material for Na-Ion Batteries
journal, March 2017

  • Ma, Chuze; Alvarado, Judith; Xu, Jing
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.7b00164

Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries
journal, August 2016

  • Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 34
  • DOI: 10.1021/acsami.6b06701

Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries
journal, January 2022

  • Jiang, Jinsen; He, Hung-Chieh; Cheng, Chen
  • ACS Applied Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1021/acsaem.1c03656

Na + /vacancy disordering promises high-rate Na-ion batteries
journal, March 2018


Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries
journal, May 2022


Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries
journal, May 2017

  • Bianchini, Matteo; Xiao, Penghao; Wang, Yan
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700514

Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Whole‐Voltage‐Range Oxygen Redox in P2‐Layered Cathode Materials for Sodium‐Ion Batteries
journal, March 2021


Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries
journal, February 2020


Effect of Eliminating Water in Prussian Blue Cathode for Sodium‐Ion Batteries
journal, March 2022

  • Wang, Wanlin; Gang, Yong; Peng, Jian
  • Advanced Functional Materials, Vol. 32, Issue 25
  • DOI: 10.1002/adfm.202111727

Structural classification and properties of the layered oxides
journal, January 1980