DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Sat Jan 04 00:00:00 EST 2025

Title: Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes

Abstract

The predictive design of flexible and solvent-free polymer electrolytes for solid-state batteries requires an understanding of the fundamental principles governing the ion transport. In this work, we establish a correlation among the composite structures, polymer segmental dynamics, and lithium ion (Li+) transport in a ceramic-polymer composite. Elucidating this structure–property relationship will allow tailoring of the Li+ conductivity by optimizing the macroscopic electrochemical stability of the electrolyte. The ion dissociation from the slow polymer segmental dynamics was found to be enhanced by controlling the morphology and functionality of the polymer/ceramic interface. The chemical structure of the Li+ salt in the composite electrolyte was correlated with the size of the ionic cluster domains, the conductivity mechanism, and the electrochemical stability of the electrolyte. Polyethylene oxide (PEO) filled with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium bis(fluorosulfonyl) imide (LiFSI) salts was used as a matrix. A garnet electrolyte, aluminum substituted lithium lanthanum zirconium oxide (Al-LLZO) with a planar geometry, was used for the ceramic nanoparticle moieties. Further, the dynamics of the strongly bound and highly mobile Li+ were investigated using dielectric relaxation spectroscopy. The incorporation of the Al-LLZO platelets increased the number density of more mobile Li+. The structure of the nanoscale ion-agglomeration was investigatedmore » by small-angle X-ray scattering, while molecular dynamics (MD) simulation studies were conducted to obtain the fundamental mechanism of the decorrelation of the Li+ in the LiTFSI and LiFSI salts from the long PEO chain.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1];  [1]; ORCiD logo [1]
  1. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
2283877
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 18; Journal Issue: 4; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; polymer electrolyte; lithium bis(trifluoromethanesulfonyl)imide (LiTFSI); lithium bis(fluorosulfonyl) imide (LiFSI); aluminum substituted lithium lanthanum zirconium oxide; solid-state batteries

Citation Formats

Polizos, Georgios, Goswami, Monojoy, Keum, Jong K., He, Lilin, Jafta, Charl J., Sharma, Jaswinder, Wang, Yangyang, Kearney, Logan T., Tao, Runming, and Li, Jianlin. Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes. United States: N. p., 2024. Web. doi:10.1021/acsnano.3c03901.
Polizos, Georgios, Goswami, Monojoy, Keum, Jong K., He, Lilin, Jafta, Charl J., Sharma, Jaswinder, Wang, Yangyang, Kearney, Logan T., Tao, Runming, & Li, Jianlin. Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes. United States. https://doi.org/10.1021/acsnano.3c03901
Polizos, Georgios, Goswami, Monojoy, Keum, Jong K., He, Lilin, Jafta, Charl J., Sharma, Jaswinder, Wang, Yangyang, Kearney, Logan T., Tao, Runming, and Li, Jianlin. Thu . "Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes". United States. https://doi.org/10.1021/acsnano.3c03901.
@article{osti_2283877,
title = {Nanoscale Ion Transport Enhances Conductivity in Solid Polymer-Ceramic Lithium Electrolytes},
author = {Polizos, Georgios and Goswami, Monojoy and Keum, Jong K. and He, Lilin and Jafta, Charl J. and Sharma, Jaswinder and Wang, Yangyang and Kearney, Logan T. and Tao, Runming and Li, Jianlin},
abstractNote = {The predictive design of flexible and solvent-free polymer electrolytes for solid-state batteries requires an understanding of the fundamental principles governing the ion transport. In this work, we establish a correlation among the composite structures, polymer segmental dynamics, and lithium ion (Li+) transport in a ceramic-polymer composite. Elucidating this structure–property relationship will allow tailoring of the Li+ conductivity by optimizing the macroscopic electrochemical stability of the electrolyte. The ion dissociation from the slow polymer segmental dynamics was found to be enhanced by controlling the morphology and functionality of the polymer/ceramic interface. The chemical structure of the Li+ salt in the composite electrolyte was correlated with the size of the ionic cluster domains, the conductivity mechanism, and the electrochemical stability of the electrolyte. Polyethylene oxide (PEO) filled with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium bis(fluorosulfonyl) imide (LiFSI) salts was used as a matrix. A garnet electrolyte, aluminum substituted lithium lanthanum zirconium oxide (Al-LLZO) with a planar geometry, was used for the ceramic nanoparticle moieties. Further, the dynamics of the strongly bound and highly mobile Li+ were investigated using dielectric relaxation spectroscopy. The incorporation of the Al-LLZO platelets increased the number density of more mobile Li+. The structure of the nanoscale ion-agglomeration was investigated by small-angle X-ray scattering, while molecular dynamics (MD) simulation studies were conducted to obtain the fundamental mechanism of the decorrelation of the Li+ in the LiTFSI and LiFSI salts from the long PEO chain.},
doi = {10.1021/acsnano.3c03901},
journal = {ACS Nano},
number = 4,
volume = 18,
place = {United States},
year = {Thu Jan 04 00:00:00 EST 2024},
month = {Thu Jan 04 00:00:00 EST 2024}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 4, 2025
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries
journal, June 2020


A review of composite polymer-ceramic electrolytes for lithium batteries
journal, January 2021


Challenges in speeding up solid-state battery development
journal, February 2023


Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer
journal, April 2014

  • Stewart-Sloan, Charlotte R.; Olsen, Bradley D.
  • ACS Macro Letters, Vol. 3, Issue 5
  • DOI: 10.1021/mz400650q

From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing
journal, October 2021


Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes
journal, July 2017

  • Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
  • The Journal of Physical Chemistry B, Vol. 121, Issue 28
  • DOI: 10.1021/acs.jpcb.7b05047

Linear Viscoelasticity and Fourier Transform Infrared Spectroscopy of Polyether–Ester–Sulfonate Copolymer Ionomers
journal, May 2014

  • Chen, Quan; Masser, Hanqing; Shiau, Huai-Suen
  • Macromolecules, Vol. 47, Issue 11
  • DOI: 10.1021/ma5008144

Nanostructured ligament and fiber Al–doped Li7La3Zr2O12 scaffolds to mediate cathode-electrolyte interface chemistry
journal, November 2021


Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics
journal, May 2021

  • Jewett, Andrew I.; Stelter, David; Lambert, Jason
  • Journal of Molecular Biology, Vol. 433, Issue 11
  • DOI: 10.1016/j.jmb.2021.166841

Kinetics of crystallization in semicrystalline/amorphous polymer mixtures
journal, July 1986


High temperature sodium batteries: status, challenges and future trends
journal, January 2013

  • Hueso, Karina B.; Armand, Michel; Rojo, Teófilo
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24086j

Influence of Water-Soluble Polymers on the Shear-Induced Structure Formation in Lyotropic Lamellar Phases
journal, November 2001

  • Berghausen, Jörg; Zipfel, Johannes; Lindner, Peter
  • The Journal of Physical Chemistry B, Vol. 105, Issue 45
  • DOI: 10.1021/jp0115897

Synchrotron X-ray scattering studies of the nature of shear-induced shish-kebab structure in polyethylene melt
book, January 2005

  • Keum, Jong Kahk; Burger, Christian; Hsiao, Benjamin S.
  • Scattering Methods and the Properties of Polymer Materials, p. 114-126
  • DOI: 10.1007/b107329

Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li-Electrolyte Interface for Solid State Lithium-Ion Batteries
journal, September 2017

  • Yang, Luyi; Wang, Zijian; Feng, Yancong
  • Advanced Energy Materials, Vol. 7, Issue 22
  • DOI: 10.1002/aenm.201701437

Composite solid electrolytes for all-solid-state lithium batteries
journal, April 2019


Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries
journal, December 2017


Über die Kinetik der Kettenpolymerisationen. V.
journal, May 1939


Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries
journal, December 2019


Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte
journal, July 2014


Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases : interplay between form and structure factors
journal, April 1993

  • Nallet, F.; Laversanne, R.; Roux, D.
  • Journal de Physique II, Vol. 3, Issue 4
  • DOI: 10.1051/jp2:1993146

Polymer Electrolytes
journal, July 2013


Hybrid Electrolyte of Li1.3Al0.3Ti1.7(PO4)3 Nanofibers and Cross-linked Gel Electrolyte for Li Metal Batteries
journal, December 2022

  • Choi, Hyunji; Kwon, Hyeokjin; Kim, Hee-Tak
  • ACS Applied Energy Materials, Vol. 6, Issue 2
  • DOI: 10.1021/acsaem.2c03090

How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes?
journal, June 2014

  • Cheng, Shan; Smith, Derrick M.; Li, Christopher Y.
  • Macromolecules, Vol. 47, Issue 12
  • DOI: 10.1021/ma500734q

Hierarchical TiO2:Cu2O Nanostructures for Gas/Vapor Sensing and CO2 Sequestration
journal, November 2019

  • Muckley, Eric S.; Aytug, Tolga; Mayes, Richard
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 51
  • DOI: 10.1021/acsami.9b18824

Diffusion and migration in polymer electrolytes
journal, April 2020


A new Guinier–Porod model
journal, May 2010


Progress in Solid Polymer Electrolytes for Lithium‐Ion Batteries and Beyond
journal, September 2021


Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers
journal, July 2022


Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Anomalous Self-Assembly and Ion Transport in Nanostructured Organic–Inorganic Solid Electrolytes
journal, August 2018


Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium-Metal Batteries
journal, December 2022

  • Shan, Xinyuan; Zhao, Sheng; Ma, Mengxiang
  • ACS Applied Materials & Interfaces, Vol. 14, Issue 50
  • DOI: 10.1021/acsami.2c17547

Understanding Interfacial Block Copolymer Structure and Dynamics
journal, January 2023


Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges
journal, January 2021

  • Popovic, Jelena; Brandell, Daniel; Ohno, Sanyeuki
  • Journal of Materials Chemistry A, Vol. 9, Issue 10
  • DOI: 10.1039/D0TA11679C

Single-Ion Polymer Electrolyte Membranes Enable Lithium-Ion Batteries with a Broad Operating Temperature Range
journal, March 2014


Space-Charge Effects at the Li 7 La 3 Zr 2 O 12 /Poly(ethylene oxide) Interface
journal, March 2019

  • Brogioli, Doriano; Langer, Frederieke; Kun, Robert
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 12
  • DOI: 10.1021/acsami.8b19237

Transport and mechanical behavior in PEO-LLZO composite electrolytes
journal, July 2022

  • Kim, Hong-Keun; Barai, Pallab; Chavan, Kanchan
  • Journal of Solid State Electrochemistry, Vol. 26, Issue 9
  • DOI: 10.1007/s10008-022-05231-w

Analysis of Classical Statistical Mechanics by Means of Collective Coordinates
journal, April 1958


Design of a multi-functional gel polymer electrolyte with a 3D compact stacked polymer micro-sphere matrix for high-performance lithium metal batteries
journal, January 2022

  • Liang, Jiyuan; Tao, Runming; Tu, Ji
  • Journal of Materials Chemistry A, Vol. 10, Issue 23
  • DOI: 10.1039/D2TA02085H

Asymmetrical self-assembly from fluorinated and sulfonated block copolymers in aqueous media
journal, January 2011

  • Wang, Xiaojun; Hong, Kunlun; Baskaran, Durairaj
  • Soft Matter, Vol. 7, Issue 18
  • DOI: 10.1039/c1sm06040f

LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
journal, February 2022

  • Thompson, Aidan P.; Aktulga, H. Metin; Berger, Richard
  • Computer Physics Communications, Vol. 271
  • DOI: 10.1016/j.cpc.2021.108171

Tailoring inorganic–polymer composites for the mass production of solid-state batteries
journal, May 2021


Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries
journal, June 2019


A Small-Angle Neutron Scattering (SANS) Study of Tablet-Shaped and Ribbonlike Micelles Formed from Mixtures of an Anionic and a Cationic Surfactant
journal, September 1999

  • Bergström, Magnus; Pedersen, Jan Skov
  • The Journal of Physical Chemistry B, Vol. 103, Issue 40
  • DOI: 10.1021/jp990535i

Definition and testing of the GROMOS force-field versions 54A7 and 54B7
journal, April 2011

  • Schmid, Nathan; Eichenberger, Andreas P.; Choutko, Alexandra
  • European Biophysics Journal, Vol. 40, Issue 7
  • DOI: 10.1007/s00249-011-0700-9

Progress in flexible lithium batteries and future prospects
journal, January 2014

  • Zhou, Guangmin; Li, Feng; Cheng, Hui-Ming
  • Energy Environ. Sci., Vol. 7, Issue 4
  • DOI: 10.1039/C3EE43182G

Surfactant-Mediated Polyelectrolyte Self-Assembly in a Polyelectrolyte–Surfactant Complex
journal, November 2015


Effects of Plasticizer Content and Ceramic Addition on Electrochemical Properties of Cross-Linked Polymer Electrolyte
journal, May 2021

  • Du, Zhijia; Chen, X. Chelsea; Sahore, Ritu
  • Journal of The Electrochemical Society, Vol. 168, Issue 5
  • DOI: 10.1149/1945-7111/abebf6

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017