DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering

Abstract

Composite electrolytes composed of a polymer electrolyte and an ion-conducting ceramic electrolyte are promising in fulfilling the requirements for a stable lithium metal anode. In this work, we identify the effects of the surface of a lithium-ion-conducting ceramic, the Ohara LICGC™ ceramic, on the segmental dynamics and ionic conductivity of polymer electrolyte consisting of poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Using quasi-elastic neutron scattering, we study the segmental motion of PEO chains under the confinement of LiTFSI salt and Ohara ceramic, in their melt state (363 K). We compare the relaxation time, τ, and the monomeric friction coefficient, ζ, of four samples: neat PEO, PEO + Ohara ceramic, PEO + LiTFSI and PEO + LiTFSI + Ohara ceramic. In the absence of LiTFSI, Ohara ceramic posed negligible change in the segmental dynamics of PEO. In contrast, with the presence of LiTFSI, Ohara ceramic slowed down the segmental motion of PEO chains by ~60% compared to neat PEO + LiTFSI. The intrinsic ionic conductivity of the polymer phase in the composite decreased by ~30% compared to the neat polymer electrolyte. The underpinnings of these results may be that polymer chains in the vicinity of the ceramic surface are less mobile duemore » to coordination with surface bound lithium ions.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1515678
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Systems Design & Engineering
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2058-9689
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Chen, X. Chelsea, Sacci, Robert L., Osti, Naresh C., Tyagi, Madhusudan, Wang, Yangyang, Palmer, Max J., and Dudney, Nancy J. Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. United States: N. p., 2019. Web. doi:10.1039/c8me00113h.
Chen, X. Chelsea, Sacci, Robert L., Osti, Naresh C., Tyagi, Madhusudan, Wang, Yangyang, Palmer, Max J., & Dudney, Nancy J. Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. United States. https://doi.org/10.1039/c8me00113h
Chen, X. Chelsea, Sacci, Robert L., Osti, Naresh C., Tyagi, Madhusudan, Wang, Yangyang, Palmer, Max J., and Dudney, Nancy J. Tue . "Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering". United States. https://doi.org/10.1039/c8me00113h. https://www.osti.gov/servlets/purl/1515678.
@article{osti_1515678,
title = {Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering},
author = {Chen, X. Chelsea and Sacci, Robert L. and Osti, Naresh C. and Tyagi, Madhusudan and Wang, Yangyang and Palmer, Max J. and Dudney, Nancy J.},
abstractNote = {Composite electrolytes composed of a polymer electrolyte and an ion-conducting ceramic electrolyte are promising in fulfilling the requirements for a stable lithium metal anode. In this work, we identify the effects of the surface of a lithium-ion-conducting ceramic, the Ohara LICGC™ ceramic, on the segmental dynamics and ionic conductivity of polymer electrolyte consisting of poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Using quasi-elastic neutron scattering, we study the segmental motion of PEO chains under the confinement of LiTFSI salt and Ohara ceramic, in their melt state (363 K). We compare the relaxation time, τ, and the monomeric friction coefficient, ζ, of four samples: neat PEO, PEO + Ohara ceramic, PEO + LiTFSI and PEO + LiTFSI + Ohara ceramic. In the absence of LiTFSI, Ohara ceramic posed negligible change in the segmental dynamics of PEO. In contrast, with the presence of LiTFSI, Ohara ceramic slowed down the segmental motion of PEO chains by ~60% compared to neat PEO + LiTFSI. The intrinsic ionic conductivity of the polymer phase in the composite decreased by ~30% compared to the neat polymer electrolyte. The underpinnings of these results may be that polymer chains in the vicinity of the ceramic surface are less mobile due to coordination with surface bound lithium ions.},
doi = {10.1039/c8me00113h},
journal = {Molecular Systems Design & Engineering},
number = 2,
volume = 4,
place = {United States},
year = {Tue Mar 26 00:00:00 EDT 2019},
month = {Tue Mar 26 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of anion polarization on conductivity behavior of poly(ethylene oxide) complexed with alkali salts
journal, November 1992

  • Besner, S.; Vallee, A.; Bouchard, G.
  • Macromolecules, Vol. 25, Issue 24
  • DOI: 10.1021/ma00050a015

Flexible, Scalable, and Highly Conductive Garnet-Polymer Solid Electrolyte Templated by Bacterial Cellulose
journal, March 2018

  • Xie, Hua; Yang, Chunpeng; Fu, Kun Kelvin
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703474

Lithium environment in PEO-LiClO 4 polymer electrolyte
journal, May 2001


Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles
journal, January 2017

  • Wang, Weimin; Yi, Eongyu; Fici, Anthony J.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 5
  • DOI: 10.1021/acs.jpcc.6b11136

Structure and Mobility of PEO/LiClO 4 Solid Polymer Electrolytes Filled with Al 2 O 3 Nanoparticles
journal, May 2010

  • Fullerton-Shirey, Susan K.; Maranas, Janna K.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 20
  • DOI: 10.1021/jp906608p

DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data
journal, November 2009

  • Azuah, Richard Tumanjong; Kneller, Larry R.; Qiu, Yiming
  • Journal of Research of the National Institute of Standards and Technology, Vol. 114, Issue 6
  • DOI: 10.6028/jres.114.025

Li 0.33 La 0.557 TiO 3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries
journal, January 2018

  • Zhu, Pei; Yan, Chaoyi; Dirican, Mahmut
  • Journal of Materials Chemistry A, Vol. 6, Issue 10
  • DOI: 10.1039/C7TA10517G

Influence of nanoparticle surface chemistry on ion transport in polymer nanocomposite electrolytes
journal, March 2016


Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Dynamic Patterning in PEO-Based Single Ion Conductors for Li Ion Batteries
journal, April 2012

  • Sinha, Kokonad; Wang, Wenqin; Winey, Karen I.
  • Macromolecules, Vol. 45, Issue 10
  • DOI: 10.1021/ma300051y

Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations
journal, July 2001


Effects of alumina whisker in (PEO)8–LiClO4-based composite polymer electrolytes
journal, May 2002


Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes
journal, October 2013

  • Hanson, Ben; Pryamitsyn, Victor; Ganesan, Venkat
  • ACS Macro Letters, Vol. 2, Issue 11
  • DOI: 10.1021/mz400234m

Segmental Dynamics and Ion Association in PEO-Based Single Ion Conductors
journal, July 2011

  • Sinha, Kokonad; Maranas, Janna K.
  • Macromolecules, Vol. 44, Issue 13
  • DOI: 10.1021/ma2005074

Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI
journal, August 2018


Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
journal, December 2015

  • Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1520394112

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Interplay of Surface Chemistry and Ion Content in Nanoparticle-Filled Solid Polymer Electrolytes
journal, May 2014

  • Ganapatibhotla, Lalitha V. N. R.; Maranas, Janna K.
  • Macromolecules, Vol. 47, Issue 11
  • DOI: 10.1021/ma500072j

The high-flux backscattering spectrometer at the NIST Center for Neutron Research
journal, May 2003

  • Meyer, A.; Dimeo, R. M.; Gehring, P. M.
  • Review of Scientific Instruments, Vol. 74, Issue 5
  • DOI: 10.1063/1.1568557

Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations
journal, January 2017

  • Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath
  • Soft Matter, Vol. 13, Issue 43
  • DOI: 10.1039/C7SM01009E

Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers
journal, March 2015


Effect of LiClO 4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes
journal, March 2009

  • Fullerton-Shirey, Susan K.; Maranas, Janna K.
  • Macromolecules, Vol. 42, Issue 6
  • DOI: 10.1021/ma802502u

Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes
journal, May 2001


Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration
journal, October 2018


Phase Diagrams and Conductivity Characterization of Some PEO-LiX Electrolytes
journal, January 1986

  • Robitaille, C. D.
  • Journal of The Electrochemical Society, Vol. 133, Issue 2
  • DOI: 10.1149/1.2108569

A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers
journal, July 1953

  • Rouse, Prince E.
  • The Journal of Chemical Physics, Vol. 21, Issue 7
  • DOI: 10.1063/1.1699180

Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria
journal, March 2012


The dynamics in polyethyleneoxide–alkali iodide complexes investigated by neutron spin-echo spectroscopy and molecular dynamics simulations
journal, July 2000

  • Mos, B.; Verkerk, P.; Pouget, S.
  • The Journal of Chemical Physics, Vol. 113, Issue 1
  • DOI: 10.1063/1.481767

Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach
journal, March 2017

  • Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.6b16304

Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3
journal, November 1993


Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li 7 La 3 Zr 2 O 12 in P(EO) 15 LiTFSI
journal, June 2017


Globally Suppressed Dynamics in Ion-Doped Polymers
journal, May 2018


Relationship between Segmental Dynamics Measured by Quasi-Elastic Neutron Scattering and Conductivity in Polymer Electrolytes
journal, March 2018


Chain Dynamics and Viscoelastic Properties of Poly(ethylene oxide)
journal, July 2008

  • Niedzwiedz, K.; Wischnewski, A.; Pyckhout-Hintzen, W.
  • Macromolecules, Vol. 41, Issue 13
  • DOI: 10.1021/ma800446n

Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
journal, June 2018


Relaxation in polymer electrolytes on the nanosecond timescale
journal, May 2000

  • Mao, Guomin; Perea, Ricardo Fernandez; Howells, W. Spencer
  • Nature, Vol. 405, Issue 6783
  • DOI: 10.1038/35012032

A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS
journal, August 2011

  • Mamontov, E.; Herwig, K. W.
  • Review of Scientific Instruments, Vol. 82, Issue 8
  • DOI: 10.1063/1.3626214

Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
text, January 2016

  • P., Balsara, Nitash; Wei, Tong,; Irune, Villaluenga,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/f4g2-bd46

Works referencing / citing this record:

Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020