DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation

Abstract

Even though the discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally shifted our understanding of biomass degradation, most of the current studies focused on their roles in carbohydrate oxidation. However, no study demonstrated if LPMO could directly participate to the process of lignin degradation in lignin-degrading microbes. This study showed that LPMO could synergize with lignin-degrading enzymes for efficient lignin degradation in white-rot fungi. The transcriptomics analysis of fungi Irpex lacteus and Dichomitus squalens during their lignocellulosic biomass degradation processes surprisingly highlighted that LPMOs co-regulated with lignin-degrading enzymes, indicating their more versatile roles in the redox network. Biochemical analysis further confirmed that the purified LPMO from I. lacteus CD2 could use diverse electron donors to produce H2O2, drive Fenton reaction, and synergize with manganese peroxidase for lignin oxidation. The results thus indicated that LPMO might uniquely leverage the redox network toward dynamic and efficient degradation of different cell wall components.

Authors:
 [1];  [2];  [3];  [4];  [4];  [5]; ORCiD logo [6]; ORCiD logo [7];  [4];  [5];  [5];  [8];  [5]
  1. Huazhong Univ. of Science and Technology, Wuhan (China); Wuchang Shouyi University, Wuhan, (China)
  2. Huazhong Univ. of Science and Technology, Wuhan (China); Wuhan University of Science and Technology (China)
  3. Huazhong Univ. of Science and Technology, Wuhan (China); Texas A & M Univ., College Station, TX (United States)
  4. Texas A & M Univ., College Station, TX (United States)
  5. Huazhong Univ. of Science and Technology, Wuhan (China)
  6. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  7. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  8. Washington Univ., St. Louis, MO (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; National Natural Science Foundation of China (NSFC); Natural Science Foundation of Hubei Province; Department of Education of Hubei Province
OSTI Identifier:
2267623
Grant/Contract Number:  
AC05-00OR22725; 31970098; 32170122; 31900081; 32000067; 2022CFB507; B2022398
Resource Type:
Accepted Manuscript
Journal Name:
iScience
Additional Journal Information:
Journal Volume: 26; Journal Issue: 10; Journal ID: ISSN 2589-0042
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; biotechnology; biomass

Citation Formats

Sun, Su, Li, Fei, Li, Muzi, Zhang, Wenqian, Jiang, Zhenxiong, Zhao, Honglu, Pu, Yunqiao, Ragauskas, Arthur J., Dai, Susie Y., Zhang, Xiaoyu, Yu, Hongbo, Yuan, Joshua S., and Xie, Shangxian. Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation. United States: N. p., 2023. Web. doi:10.1016/j.isci.2023.107870.
Sun, Su, Li, Fei, Li, Muzi, Zhang, Wenqian, Jiang, Zhenxiong, Zhao, Honglu, Pu, Yunqiao, Ragauskas, Arthur J., Dai, Susie Y., Zhang, Xiaoyu, Yu, Hongbo, Yuan, Joshua S., & Xie, Shangxian. Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation. United States. https://doi.org/10.1016/j.isci.2023.107870
Sun, Su, Li, Fei, Li, Muzi, Zhang, Wenqian, Jiang, Zhenxiong, Zhao, Honglu, Pu, Yunqiao, Ragauskas, Arthur J., Dai, Susie Y., Zhang, Xiaoyu, Yu, Hongbo, Yuan, Joshua S., and Xie, Shangxian. Sat . "Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation". United States. https://doi.org/10.1016/j.isci.2023.107870. https://www.osti.gov/servlets/purl/2267623.
@article{osti_2267623,
title = {Lytic polysaccharide monooxygenase synergized with lignin-degrading enzymes for efficient lignin degradation},
author = {Sun, Su and Li, Fei and Li, Muzi and Zhang, Wenqian and Jiang, Zhenxiong and Zhao, Honglu and Pu, Yunqiao and Ragauskas, Arthur J. and Dai, Susie Y. and Zhang, Xiaoyu and Yu, Hongbo and Yuan, Joshua S. and Xie, Shangxian},
abstractNote = {Even though the discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally shifted our understanding of biomass degradation, most of the current studies focused on their roles in carbohydrate oxidation. However, no study demonstrated if LPMO could directly participate to the process of lignin degradation in lignin-degrading microbes. This study showed that LPMO could synergize with lignin-degrading enzymes for efficient lignin degradation in white-rot fungi. The transcriptomics analysis of fungi Irpex lacteus and Dichomitus squalens during their lignocellulosic biomass degradation processes surprisingly highlighted that LPMOs co-regulated with lignin-degrading enzymes, indicating their more versatile roles in the redox network. Biochemical analysis further confirmed that the purified LPMO from I. lacteus CD2 could use diverse electron donors to produce H2O2, drive Fenton reaction, and synergize with manganese peroxidase for lignin oxidation. The results thus indicated that LPMO might uniquely leverage the redox network toward dynamic and efficient degradation of different cell wall components.},
doi = {10.1016/j.isci.2023.107870},
journal = {iScience},
number = 10,
volume = 26,
place = {United States},
year = {Sat Sep 09 00:00:00 EDT 2023},
month = {Sat Sep 09 00:00:00 EDT 2023}
}

Works referenced in this record:

Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase
journal, June 2018

  • Peciulyte, Ausra; Samuelsson, Louise; Olsson, Lisbeth
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-018-1159-z

Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
journal, December 2013

  • Kim, S.; Stahlberg, J.; Sandgren, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1316609111

Quinone group enhances the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism
journal, October 2018


Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs)
journal, November 2020


Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel—from systems biology to synthetic design
journal, June 2014


Synergism of Recombinant Podospora anserina PaAA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates
journal, July 2020


Oxidative cleavage of C–C bonds in lignin
journal, September 2021

  • Subbotina, Elena; Rukkijakan, Thanya; Marquez-Medina, M. Dolores
  • Nature Chemistry, Vol. 13, Issue 11
  • DOI: 10.1038/s41557-021-00783-2

Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9
journal, January 2018

  • Brenelli, Lívia; Squina, Fabio M.; Felby, Claus
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-017-0985-8

Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
journal, December 2015

  • Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep18561

Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization
journal, December 2019

  • Hüttner, Silvia; Várnai, Anikó; Petrović, Dejan M.
  • Applied and Environmental Microbiology, Vol. 85, Issue 23
  • DOI: 10.1128/AEM.01408-19

Simultaneous conversion of all cell wall components by an oleaginous fungus without chemi-physical pretreatment
journal, January 2015

  • Xie, Shangxian; Qin, Xing; Cheng, Yanbing
  • Green Chemistry, Vol. 17, Issue 3
  • DOI: 10.1039/C4GC01529K

A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion
journal, September 2017


Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks
journal, May 2017

  • Frommhagen, Matthias; Mutte, Sumanth Kumar; Westphal, Adrie H.
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-017-0810-4

Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
journal, May 2017

  • Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603301

An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides
journal, October 2010

  • Vaaje-Kolstad, Gustav; Westereng, Bjørge; Horn, Svein J.
  • Science, Vol. 330, Issue 6001, p. 219-222
  • DOI: 10.1126/science.1192231

Microbial lignin valorization through depolymerization to aromatics conversion
journal, December 2022


A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase
journal, May 2019

  • Li, Fei; Ma, Fuying; Zhao, Honglu
  • Applied and Environmental Microbiology, Vol. 85, Issue 9
  • DOI: 10.1128/AEM.02803-18

Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase
journal, January 2015

  • Lo Leggio, Leila; Simmons, Thomas J.; Poulsen, Jens-Christian N.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6961

Genomic and molecular mechanisms for efficient biodegradation of aromatic dye
journal, January 2016


Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
journal, August 2011

  • Quinlan, R. J.; Sweeney, M. D.; Lo Leggio, L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 37, p. 15079-15084
  • DOI: 10.1073/pnas.1105776108

Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses
journal, March 2018


Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2
journal, August 2017

  • Bissaro, Bastien; Røhr, Åsmund K.; Müller, Gerdt
  • Nature Chemical Biology, Vol. 13, Issue 10
  • DOI: 10.1038/nchembio.2470

Synergistic enzymatic and microbial lignin conversion
journal, January 2016

  • Zhao, Cheng; Xie, Shangxian; Pu, Yunqiao
  • Green Chemistry, Vol. 18, Issue 5
  • DOI: 10.1039/C5GC01955A

Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
journal, January 2012

  • Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-79

Enhancing the Production of Hydroxyl Radicals by Pleurotus eryngii via Quinone Redox Cycling for Pollutant Removal
journal, June 2009

  • Gómez-Toribio, Víctor; García-Martín, Ana B.; Martínez, María J.
  • Applied and Environmental Microbiology, Vol. 75, Issue 12
  • DOI: 10.1128/AEM.02138-08

Lytic xylan oxidases from wood-decay fungi unlock biomass degradation
journal, January 2018

  • Couturier, Marie; Ladevèze, Simon; Sulzenbacher, Gerlind
  • Nature Chemical Biology, Vol. 14, Issue 3
  • DOI: 10.1038/nchembio.2558

Unique Lysine-Rich Sequence on the CYT Domain of AfCDH Enhances Its Interdomain Electron Transfer and Activation of AA9 LPMOs
journal, April 2022


Role of Selective Fungal Delignification in Overcoming the Saccharification Recalcitrance of Bamboo Culms
journal, September 2017


Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation
journal, April 2014

  • Agger, J. W.; Isaksen, T.; Varnai, A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1323629111

Extracellular electron transfer systems fuel cellulose oxidative degradation
journal, April 2016


Advanced Chemical Design for Efficient Lignin Bioconversion
journal, January 2017


Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme
journal, April 2016

  • Cannella, D.; Möllers, K. B.; Frigaard, N. -U.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11134

2-Naphthol Impregnation Prior to Steam Explosion Promotes LPMO-Assisted Enzymatic Saccharification of Spruce and Yields High-Purity Lignin
journal, April 2022

  • Hansen, Line Degn; Østensen, Martin; Arstad, Bjørnar
  • ACS Sustainable Chemistry & Engineering, Vol. 10, Issue 16
  • DOI: 10.1021/acssuschemeng.2c00286

Discovery and characterization of a new family of lytic polysaccharide monooxygenases
journal, December 2013

  • Hemsworth, Glyn R.; Henrissat, Bernard; Davies, Gideon J.
  • Nature Chemical Biology, Vol. 10, Issue 2
  • DOI: 10.1038/nchembio.1417

Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus Dichomitus squalens
journal, October 2019

  • Daly, Paul; Peng, Mao; Di Falco, Marcos
  • Applied and Environmental Microbiology, Vol. 85, Issue 23
  • DOI: 10.1128/AEM.01828-19

A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase
journal, August 2014


Role of quinone reductases in extracellular redox cycling in lichenized ascomycetes
journal, November 2021


The effect of lignin model compound structure on the rate of oxidation catalyzed by two different fungal laccases
journal, May 2009

  • Lahtinen, Maarit; Kruus, Kristiina; Boer, Harry
  • Journal of Molecular Catalysis B: Enzymatic, Vol. 57, Issue 1-4
  • DOI: 10.1016/j.molcatb.2008.09.004

C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases
journal, July 2021

  • Branch, Jessie; Rajagopal, Badri S.; Paradisi, Alessandro
  • Biochemical Journal, Vol. 478, Issue 14
  • DOI: 10.1042/BCJ20210376

Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes
journal, February 2022

  • Sagarika, Mahapatra Smruthi; Parameswaran, Chidambaranathan; Senapati, Ansuman
  • Science of The Total Environment, Vol. 806
  • DOI: 10.1016/j.scitotenv.2021.150451