skip to main content

DOE PAGESDOE PAGES

27 results for: All records
Author ORCID ID is 000000023536554X
Full Text and Citations
Filters
  1. ABSTRACT Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates toC. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(–) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15%more » (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance.« less
  2. Background: Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H, respectively). Three different lignin fractions were extracted using ethanol, followed by p-dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively).Results: Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weightsmore » for the other two lignin fractions were similar. 31P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p-hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β-O-4 linkages with small amounts of β-5 and β–β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L1 > L3 > L2 for the low recalcitrance poplar and H1 > H2 > H3 for the high recalcitrance poplar.Conclusions: Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption ability. Lignins with more phenolic hydroxyl groups had higher CBH binding strength. It was also found that lignin fractions with more condensed aromatics adsorbed more CBH likely attributed to stronger hydrophobic interactions.« less
  3. The formation of lignin-like structures by the degradation primarily of plant polysaccharides has been observed after the severe thermochemical acidic pretreatment of lignocellulosic biomass.
  4. Here, Domain of Unknown Function 231-containing proteins (DUF231) are plant specific and their function is largely unknown. Studies in the model plants Arabidopsis and rice suggested that some DUF231 proteins act in the process of O-acetyl substitution of hemicellulose and esterification of pectin. However, little is known about the function of DUF231 proteins in woody plant species. This study provides evidence supporting that one member of DUF231 family proteins in the woody perennial plant Populus deltoides (genotype WV94), PdDUF231A, has a role in the acetylation of xylan and affects cellulose biosynthesis. A total of 52 DUF231-containing proteins were identified inmore » the Populus genome. In P. deltoides transgenic lines overexpressing PdDUF231A ( OXPdDUF231A), glucose and cellulose contents were increased. Consistent with these results, the transcript levels of cellulose biosynthesis-related genes were increased in the OXPdDUF231A transgenic lines. Furthermore, the relative content of total acetylated xylan was increased in the OXPdDUF231A transgenic lines. Enzymatic saccharification assays revealed that the rate of glucose release increased in OXPdDUF231A transgenic lines. Plant biomass productivity was also increased in OXPdDUF231A transgenic lines. In conclusion, these results suggest that PdDUF231A affects cellulose biosynthesis and plays a role in the acetylation of xylan. PdDUF231A is a promising target for genetic modification for biofuel production because biomass productivity and compositional quality can be simultaneously improved through overexpression.« less
  5. The identification of chemical impurities is crucial in elucidating the structures of biorefinery products using nuclear magnetic resonance (NMR) spectroscopic analysis. In the current biorefinery platform, contaminants derived from pretreatment solvents and decomposition byproducts may lead to misassignment of the NMR spectra of biorefinery products (e.g, lignin and bio-oils). Therefore, we investigated in this paper 54 commonly reported compounds including alcohols, carbohydrates, organic acids, aromatics, aldehydes, and ionic liquids associated with biomass pretreatment using 31P NMR. The chemical shifts of these chemicals after derivatizing with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP) were provided. Finally, the 31P NMR signals of these derivatives could serve asmore » valuable and informative spectral data in characterizing lignocellulose-based compounds.« less
  6. Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.
  7. Because cellulosic ethanol production remains cost-prohibitive„ advances in consolidated bioprocessing (CBP) have been directed towards lifting this restriction. CBP reduces the need for added enzymes and can potentially slash ethanol production costs through process integration. Clostridium thermocellum, a CBP microorganism, organizes its enzymes in a multi-enzyme complex - a stark contrast to fungal enzymes. Nonetheless, recalcitrance may limit the extent of biomass deconstruction. Here in this study, six Populus were treated with C. thermocellum (ATCC 27405) and characterized to determine structural changes that resulted from CBP. The 2D HSQC NMR spectra of lignin-enriched residues revealed that higher S/G ratio (2.6)more » and fewer carbon-carbon interunit linkages (generally 2–5%) were present in the top performing poplar. Furthermore, cellulose degree of polymerization data suggests that C. thermocellum likely circumvents long chain cellulose, while cellulose crystallinity and hemicellulose molecular weight data do not provide a direct indication of features connected to recalcitrance. Hence, C. thermocellum is similarly impacted by the proposed lignin properties that negatively impact biomass deconstruction using fungal enzymes.« less
  8. Acid chlorite delignification is frequently used to obtain a mixture of cellulose and hemicellulose known as holocellulose from biomass. While a majority of lignin is removed after holocellulose pulping, there appears to be a minor fraction of lignin that is more resistant to acid chlorite treatment and remains in the holocellulose even after repeated delignification treatment. This type of lignin, defined as hololignin, has not been characterized, is likely to contribute to biomass recalcitrance and is clearly of fundamental interest to understand its structural characteristics. In this study, hololignin isolated from poplar holocellulose was characterized with a wide array ofmore » techniques including GPC, quantitative 13C, DEPT-135, HSQC, and 31P NMR. The results were then compared to those from milled wood lignin (MWL), the representative native lignin isolated from poplar. NMR analysis demonstrated a depletion of cinnamyl aldehyde, acetyl group, and decrease of p-hydroxybenzoate structural units in hololignin. An enrichment of condensed structures in hololignin was observed. Hololignin also had a significantly lower molecular weight than MWL. Finally, hololignin is relatively enriched in guaiacyl units and has a lower S/G ratio, lower β-O-4 ether linkages, fewer aliphatic and phenolic hydroxyl groups, and more carboxylic acid groups than MWL.« less
  9. Bio-char is a by-product from thermochemical treatment of biomass and has been identified as an energy condensed product with a comparable heating value as commercial coal. However, the combustion of such solid product as an energy resource is only a preliminary application. It is highly possible to convert bio-char, which always has a condensed aromatic and porous structure to various high-value products. The investigations of the structures and formation pathways for the bio-char are very important to any future applications. In this study, six different biomass components, including cellulose, lignin, and tannin, and three whole biomasses—pine wood, pine residue, andmore » pine bark—have been used to produce bio-char at 400, 500, and 600 °C. Solid-state NMR and FT-IR have been employed in this study to characterize the structures for the bio-chars. The results indicated that the bio-chars produced from lignin contained some methoxyl groups, and the bio-chars produced from tannin contained significantly higher amount of phenolic hydroxyl groups. Compared to the bio-chars produced from pine wood and residue, the bio-chars produced from pine bark contained more aromatic C–O bonds, and aliphatic C–O and C–C bonds, which may be due to the significantly higher amount of lignin and tannin in the pine bark. Furthermore, the elevated amounts of aromatic C–O and aliphatic C–O and C–C bonds in the bio-chars from pine bark appeared to be completely decomposed at 600 °C.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.