DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparing Experimentally-Measured Sand’s Times with Concentrated Solution Theory Predictions in a Polymer Electrolyte

Abstract

We compare the electrochemically measured Sand’s time, the time required for the cell potential to diverge when the applied current density exceeds the limiting current, with theoretical predictions for a 0.47 M poly(ethylene oxide) (5 kg mol −1 )/LiTFSI electrolyte. The theoretical predictions are made using concentrated solution theory which accounts for both concentration polarization and polymer motion, using independently measured parameters that depend on concentration, c : conductivity ( κ ), salt diffusion coefficient ( D ), cationic transference number with respect to the solvent velocity ( t + 0 ), thermodynamic factor 1 + dln f ± dln c , and partial molar volume of the salt ( V ̅ ); f ± is the mean molar activity coefficient of the salt. We find quantitative agreement between experimental data and theoretical predictions. We derive a generalized analytical expression for Sand’s time for electrolytes based on dilute solution theory. This expression correctly predicts the divergence of the Sand’s time at the limiting current, in agreement with experimental data and concentrated solution theory predictions. When the applied current is large compared to the limiting current, the analytical expression approaches the standard expression for Sand’s time used in the literature.

Authors:
ORCiD logo; ORCiD logo; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
2246986
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 170 Journal Issue: 12; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English

Citation Formats

Hoffman, Zach J., Mistry, Aashutosh, Srinivasan, Venkat, and Balsara, Nitash P. Comparing Experimentally-Measured Sand’s Times with Concentrated Solution Theory Predictions in a Polymer Electrolyte. United States: N. p., 2023. Web. doi:10.1149/1945-7111/ad1470.
Hoffman, Zach J., Mistry, Aashutosh, Srinivasan, Venkat, & Balsara, Nitash P. Comparing Experimentally-Measured Sand’s Times with Concentrated Solution Theory Predictions in a Polymer Electrolyte. United States. https://doi.org/10.1149/1945-7111/ad1470
Hoffman, Zach J., Mistry, Aashutosh, Srinivasan, Venkat, and Balsara, Nitash P. Wed . "Comparing Experimentally-Measured Sand’s Times with Concentrated Solution Theory Predictions in a Polymer Electrolyte". United States. https://doi.org/10.1149/1945-7111/ad1470.
@article{osti_2246986,
title = {Comparing Experimentally-Measured Sand’s Times with Concentrated Solution Theory Predictions in a Polymer Electrolyte},
author = {Hoffman, Zach J. and Mistry, Aashutosh and Srinivasan, Venkat and Balsara, Nitash P.},
abstractNote = {We compare the electrochemically measured Sand’s time, the time required for the cell potential to diverge when the applied current density exceeds the limiting current, with theoretical predictions for a 0.47 M poly(ethylene oxide) (5 kg mol −1 )/LiTFSI electrolyte. The theoretical predictions are made using concentrated solution theory which accounts for both concentration polarization and polymer motion, using independently measured parameters that depend on concentration, c : conductivity ( κ ), salt diffusion coefficient ( D ), cationic transference number with respect to the solvent velocity ( t + 0 ), thermodynamic factor 1 + dln f ± dln c , and partial molar volume of the salt ( V ̅ ); f ± is the mean molar activity coefficient of the salt. We find quantitative agreement between experimental data and theoretical predictions. We derive a generalized analytical expression for Sand’s time for electrolytes based on dilute solution theory. This expression correctly predicts the divergence of the Sand’s time at the limiting current, in agreement with experimental data and concentrated solution theory predictions. When the applied current is large compared to the limiting current, the analytical expression approaches the standard expression for Sand’s time used in the literature.},
doi = {10.1149/1945-7111/ad1470},
journal = {Journal of the Electrochemical Society},
number = 12,
volume = 170,
place = {United States},
year = {Wed Dec 20 00:00:00 EST 2023},
month = {Wed Dec 20 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/1945-7111/ad1470

Save / Share:

Works referenced in this record:

Theories and Problems of Liquid Diffusion
journal, November 1945


Effect of microphase separation on the limiting current density in hybrid organic-inorganic copolymer electrolytes
journal, October 2021


Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution
journal, January 1995

  • Ma, Yanping
  • Journal of The Electrochemical Society, Vol. 142, Issue 6
  • DOI: 10.1149/1.2044206

Limiting Current Density in Single-Ion-Conducting and Conventional Block Copolymer Electrolytes
journal, April 2022

  • Hoffman, Zach J.; Ho, Alec S.; Chakraborty, Saheli
  • Journal of The Electrochemical Society, Vol. 169, Issue 4
  • DOI: 10.1149/1945-7111/ac613b

Effect of Electrode and Electrolyte Thicknesses on All-Solid-State Battery Performance Analyzed With the Sand Equation
journal, January 2020


Electrochemical properties of poly(ethylene oxide) electrolytes above the entanglement threshold
journal, June 2021


Effect of Solvent Motion on Ion Transport in Electrolytes
journal, April 2022

  • Mistry, Aashutosh; Grundy, Lorena S.; Halat, David M.
  • Journal of The Electrochemical Society, Vol. 169, Issue 4
  • DOI: 10.1149/1945-7111/ac6329

Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

On our Limited Understanding of Electrodeposition
journal, January 2019


Electric-Field-Induced Spatially Dynamic Heterogeneity of Solvent Motion and Cation Transference in Electrolytes
journal, May 2022


Comparing Measurements of Limiting Current of Electrolytes with Theoretical Predictions up to the Solubility Limit
journal, September 2019

  • Shah, Deep B.; Kim, Hong Keun; Nguyen, Hien Q.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 39
  • DOI: 10.1021/acs.jpcc.9b07121

Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions
journal, January 2018

  • Pesko, Danielle M.; Feng, Zhange; Sawhney, Simar
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0921813jes

Overlimiting ion transport dynamic toward Sand's time in solid polymer electrolytes
journal, July 2022


Continuum Description of the Role of Negative Transference Numbers on Ion Motion in Polymer Electrolytes
journal, July 2020

  • Kim, Hong-Keun; Balsara, Nitash P.; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 167, Issue 11
  • DOI: 10.1149/1945-7111/aba790

Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

Temperature and concentration dependence of the ionic transport properties of poly(ethylene oxide) electrolytes
journal, November 2021


Characterizing Ion Transport in Electrolytes via Concentration and Velocity Profiles
journal, January 2023

  • Mistry, Aashutosh; Srinivasan, Venkat; Steinrück, Hans‐Georg
  • Advanced Energy Materials, Vol. 13, Issue 9
  • DOI: 10.1002/aenm.202203690

Mass Transfer in Concentrated Binary Electrolytes
journal, September 1965

  • Newman, John; Bennion, Douglas; Tobias, Charles W.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 69, Issue 7
  • DOI: 10.1002/bbpc.19650690712

Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF 6 in EC:DEC
journal, December 2014

  • Lundgren, Henrik; Behm, Mårten; Lindbergh, Göran
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0641503jes

Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes
journal, October 2020


The Sand equation and its enormous practical relevance for solid-state lithium metal batteries
journal, April 2021


Comparing Experimental Measurements of Limiting Current in Polymer Electrolytes with Theoretical Predictions
journal, January 2019

  • Gribble, Daniel A.; Frenck, Louise; Shah, Deep B.
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0391914jes

Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Complete characterization of a lithium battery electrolyte using a combination of electrophoretic NMR and electrochemical methods
journal, January 2022

  • Hickson, Darby T.; Halat, David M.; Ho, Alec S.
  • Physical Chemistry Chemical Physics, Vol. 24, Issue 43
  • DOI: 10.1039/D2CP02622H

Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

Onset of dendritic growth in lithium/polymer cells
journal, July 2001


Comparison of Ionic Transport Properties of Non-Aqueous Lithium and Sodium Hexafluorophosphate Electrolytes
journal, April 2021

  • Landesfeind, Johannes; Hosaka, Tomooki; Graf, Maximilian
  • Journal of The Electrochemical Society, Vol. 168, Issue 4
  • DOI: 10.1149/1945-7111/abf8d9

Diffusion and migration in polymer electrolytes
journal, April 2020


Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI
journal, October 2020

  • Bazak, J. David; Allen, J. P.; Krachkovskiy, S. A.
  • Journal of The Electrochemical Society, Vol. 167, Issue 14
  • DOI: 10.1149/1945-7111/abc0c9

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte
journal, September 2008


Complete Electrochemical Characterization and Limiting Current of Polyacetal Electrolytes
journal, February 2022

  • Choo, Youngwoo; Snyder, Rachel L.; Shah, Neel J.
  • Journal of The Electrochemical Society, Vol. 169, Issue 2
  • DOI: 10.1149/1945-7111/ac4f22

Limiting Current in Nanostructured Block Copolymer Electrolytes
journal, April 2021