DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Wed May 15 00:00:00 EDT 2024

Title: Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering

Abstract

For decades, the spontaneous organization of nanocrystals into superlattices has captivated the scientific community. However, achieving direct control over the formation of the superlattice and its phase transformations has proven to be a grand challenge, often resulting in the generation of multiple symmetries under the same experimental conditions. Here, we achieve direct control over the formation of the superlattice and its phase transformations by modulating the thermal energy of a nanocrystal dispersion without relying on solvent evaporation. In this study, we follow the temperature-dependent dynamics of the self-assembly process using synchrotron-based small-angle X-ray scattering. When cooled below –24.5 °C, lead sulfide nanocrystals form micrometer-sized three-dimensional phase-pure body-centered cubic superlattices. When cooled below –35.1 °C, these superlattices undergo a collective diffusionless phase transformation that yields denser body-centered tetragonal phases. These structural changes can be reversed by increasing the temperature of the dispersion and may lead to the direct modulation of the optical properties of these artificial solids.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [3];  [2]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States); Univ. degli Studi di Palermo (Italy)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States)
  3. Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Science Foundation (NSF)
OSTI Identifier:
2229629
Report Number(s):
BNL-225050-2023-JAAM
Journal ID: ISSN 1530-6984
Grant/Contract Number:  
SC0012704; DMR-2019444
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 23; Journal Issue: 10; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nanocrystal; phase transformation; self-assembly; superlattice; SAXS; reversible

Citation Formats

Marino, Emanuele, Rosen, Daniel J., Yang, Shengsong, Tsai, Esther H. R., and Murray, Christopher B. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering. United States: N. p., 2023. Web. doi:10.1021/acs.nanolett.3c00299.
Marino, Emanuele, Rosen, Daniel J., Yang, Shengsong, Tsai, Esther H. R., & Murray, Christopher B. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering. United States. https://doi.org/10.1021/acs.nanolett.3c00299
Marino, Emanuele, Rosen, Daniel J., Yang, Shengsong, Tsai, Esther H. R., and Murray, Christopher B. Mon . "Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering". United States. https://doi.org/10.1021/acs.nanolett.3c00299.
@article{osti_2229629,
title = {Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering},
author = {Marino, Emanuele and Rosen, Daniel J. and Yang, Shengsong and Tsai, Esther H. R. and Murray, Christopher B.},
abstractNote = {For decades, the spontaneous organization of nanocrystals into superlattices has captivated the scientific community. However, achieving direct control over the formation of the superlattice and its phase transformations has proven to be a grand challenge, often resulting in the generation of multiple symmetries under the same experimental conditions. Here, we achieve direct control over the formation of the superlattice and its phase transformations by modulating the thermal energy of a nanocrystal dispersion without relying on solvent evaporation. In this study, we follow the temperature-dependent dynamics of the self-assembly process using synchrotron-based small-angle X-ray scattering. When cooled below –24.5 °C, lead sulfide nanocrystals form micrometer-sized three-dimensional phase-pure body-centered cubic superlattices. When cooled below –35.1 °C, these superlattices undergo a collective diffusionless phase transformation that yields denser body-centered tetragonal phases. These structural changes can be reversed by increasing the temperature of the dispersion and may lead to the direct modulation of the optical properties of these artificial solids.},
doi = {10.1021/acs.nanolett.3c00299},
journal = {Nano Letters},
number = 10,
volume = 23,
place = {United States},
year = {Mon May 15 00:00:00 EDT 2023},
month = {Mon May 15 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 15, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals
journal, September 2016

  • Geuchies, Jaco J.; van Overbeek, Carlo; Evers, Wiel H.
  • Nature Materials, Vol. 15, Issue 12
  • DOI: 10.1038/nmat4746

Quantum dot solids showing state-resolved band-like transport
journal, January 2020


Frequency Stabilization and Optically Tunable Lasing in Colloidal Quantum Dot Superparticles
journal, January 2023


Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices
journal, November 1995


Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage
journal, March 2011

  • Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu
  • Journal of the American Chemical Society, Vol. 133, Issue 9
  • DOI: 10.1021/ja110454b

Impact of Size Dispersity, Ligand Coverage, and Ligand Length on the Structure of PbS Nanocrystal Superlattices
journal, January 2018


Efficient and stable blue quantum dot light-emitting diode
journal, October 2020


Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices
journal, March 2023

  • Yee, Daryl W.; Lee, Margaret S.; An, Joyce
  • Journal of the American Chemical Society, Vol. 145, Issue 11
  • DOI: 10.1021/jacs.3c01286

Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices
journal, December 2015


Ordered Structure Rearrangements in Heated Gold Nanocrystal Superlattices
journal, October 2013

  • Goodfellow, Brian W.; Rasch, Michael R.; Hessel, Colin M.
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403458q

Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites
journal, August 1997


Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles
journal, May 2005

  • Cho, Kyung-Sang; Talapin, Dmitri V.; Gaschler, Wolfgang
  • Journal of the American Chemical Society, Vol. 127, Issue 19
  • DOI: 10.1021/ja050107s

Favoring the Growth of High-Quality, Three-Dimensional Supercrystals of Nanocrystals
journal, April 2020

  • Marino, Emanuele; Keller, Austin W.; An, Di
  • The Journal of Physical Chemistry C, Vol. 124, Issue 20
  • DOI: 10.1021/acs.jpcc.0c02805

History of quenching
journal, June 2008


Controlled deposition of nanoparticles with critical Casimir forces
journal, January 2021

  • Marino, Emanuele; Vasilyev, Oleg A.; Kluft, Bas B.
  • Nanoscale Horizons, Vol. 6, Issue 9
  • DOI: 10.1039/D0NH00670J

Switchable Materials for Smart Windows
journal, June 2016


Body centered tetragonal nanoparticle superlattices: why and when they form?
journal, January 2021

  • Missoni, Leandro; Tagliazucchi, Mario
  • Nanoscale, Vol. 13, Issue 34
  • DOI: 10.1039/D0NR08312G

Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic–Inorganic Hybrid Perovskite Nanocrystals
journal, July 2020


Charge transport and localization in atomically coherent quantum dot solids
journal, February 2016

  • Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4576

In Situ EXAFS-Based Nanothermometry of Heterodimer Nanocrystals under Induction Heating
journal, February 2022

  • Rosen, Daniel J.; Yang, Shengsong; Marino, Emanuele
  • The Journal of Physical Chemistry C, Vol. 126, Issue 7
  • DOI: 10.1021/acs.jpcc.2c00608

Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange
journal, December 2014

  • Weidman, Mark C.; Yager, Kevin G.; Tisdale, William A.
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm503626s

Microwave Heating of Nanocrystals for Rapid, Low-Aggregation Intermetallic Phase Transformations
journal, March 2022


Gold Nanoparticle Superlattice Crystallization Probed In Situ
journal, March 2008


Reversible Solvent Vapor-Mediated Phase Changes in Nanocrystal Superlattices
journal, March 2011

  • Goodfellow, Brian W.; Korgel, Brian A.
  • ACS Nano, Vol. 5, Issue 4
  • DOI: 10.1021/nn201273c

Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films
journal, January 2007

  • Urban, Jeffrey J.; Talapin, Dmitri V.; Shevchenko, Elena V.
  • Nature Materials, Vol. 6, Issue 2, p. 115-121
  • DOI: 10.1038/nmat1826

Self-Assembly of Atomically Aligned Nanoparticle Superlattices from Pt–Fe3O4 Heterodimer Nanoparticles
journal, March 2023

  • Yang, Shengsong; LaCour, R. Allen; Cai, Yi-Yu
  • Journal of the American Chemical Society, Vol. 145, Issue 11
  • DOI: 10.1021/jacs.2c12993

Confined-but-Connected Quantum Solids via Controlled Ligand Displacement
journal, June 2013

  • Baumgardner, William J.; Whitham, Kevin; Hanrath, Tobias
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401298s

Emergence of complexity in hierarchically organized chiral particles
journal, April 2020


Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites
journal, August 1998

  • Luedtke, W. D.; Landman, Uzi
  • The Journal of Physical Chemistry B, Vol. 102, Issue 34
  • DOI: 10.1021/jp981745i

Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots
journal, October 2000


Superlattices of Metal and Metal−Semiconductor Quantum Dots Obtained by Layer-by-Layer Deposition of Nanoparticle Arrays
journal, January 1999

  • Sarathy, K. Vijaya; Thomas, P. John; Kulkarni, G. U.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 3
  • DOI: 10.1021/jp983836l

Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
journal, March 2016

  • Weidman, Mark C.; Smilgies, Detlef-M.; Tisdale, William A.
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4600

Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer
journal, December 2020


Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice
journal, October 2019


Micron Thick Colloidal Quantum Dot Solids
journal, June 2020


Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices
journal, May 2014


Substitutional doping in nanocrystal superlattices
journal, August 2015

  • Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.
  • Nature, Vol. 524, Issue 7566
  • DOI: 10.1038/nature14872

Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly
journal, October 2020


Monitoring Nanocrystal Self‐Assembly in Real Time Using In Situ Small‐Angle X‐Ray Scattering
journal, April 2019


Enhanced Carrier Transport in Strongly Coupled, Epitaxially Fused CdSe Nanocrystal Solids
journal, April 2021


Electron Mobility of 24 cm 2 V −1 s −1 in PbSe Colloidal-Quantum-Dot Superlattices
journal, August 2018

  • Balazs, Daniel M.; Matysiak, Bartosz M.; Momand, Jamo
  • Advanced Materials, Vol. 30, Issue 38
  • DOI: 10.1002/adma.201802265

A colloidal quantum dot infrared photodetector and its use for intraband detection
journal, May 2019


Ultrafast exciton transport at early times in quantum dot solids
journal, March 2022


Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix
journal, April 2014

  • Meinardi, Francesco; Colombo, Annalisa; Velizhanin, Kirill A.
  • Nature Photonics, Vol. 8, Issue 5, p. 392-399
  • DOI: 10.1038/nphoton.2014.54

Reversible Temperature-Induced Structural Transformations in PbS Nanocrystal Superlattices
journal, June 2020

  • Winslow, Samuel W.; Smilgies, Detlef-M.; Swan, James W.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 24
  • DOI: 10.1021/acs.jpcc.0c02853

Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
journal, May 2019

  • Marino, Emanuele; Balazs, Daniel M.; Crisp, Ryan W.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 22
  • DOI: 10.1021/acs.jpcc.9b02033

In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication
journal, March 2021

  • Huang, Xin; Zhu, Jinlong; Ge, Binghui
  • Journal of the American Chemical Society, Vol. 143, Issue 11
  • DOI: 10.1021/jacs.0c12087

Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices
journal, October 2015


Melting and Sintering of a Body-Centered Cubic Superlattice of PbSe Nanocrystals Followed by Small Angle X-ray Scattering
journal, March 2011

  • Goodfellow, Brian W.; Patel, Reken N.; Panthani, Matthew G.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp2004908

Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis
journal, September 2019


Revealing Driving Forces in Quantum Dot Supercrystal Assembly
journal, August 2018

  • Marino, Emanuele; Kodger, Thomas E.; Wegdam, Gerard H.
  • Advanced Materials, Vol. 30, Issue 43
  • DOI: 10.1002/adma.201803433

Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals
journal, March 2022


Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface
journal, December 2021


Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals
journal, January 2021


High efficiency perovskite quantum dot solar cells with charge separating heterostructure
journal, June 2019


Nanocrystal Superparticles with Whispering-Gallery Modes Tunable through Chemical and Optical Triggers
journal, June 2022


Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs
journal, February 2011

  • Bian, Kaifu; Choi, Joshua J.; Kaushik, Ananth
  • ACS Nano, Vol. 5, Issue 4
  • DOI: 10.1021/nn103303q

Photonically active bowtie nanoassemblies with chirality continuum
journal, March 2023


Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals
journal, September 2020


Real-Time X-ray Scattering Discovers Rich Phase Behavior in PbS Nanocrystal Superlattices during In Situ Assembly
journal, August 2021


Investigation into the Photoluminescence Red Shift in Cesium Lead Bromide Nanocrystal Superlattices
journal, January 2019

  • Baranov, Dmitry; Toso, Stefano; Imran, Muhammad
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 3
  • DOI: 10.1021/acs.jpclett.9b00178

Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal
journal, January 2018

  • Balazs, Daniel M.; Rizkia, Nisrina; Fang, Hong-Hua
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 6
  • DOI: 10.1021/acsami.7b16882

Probing in situ the Nucleation and Growth of Gold Nanoparticles by Small-Angle X-ray Scattering
journal, June 2007

  • Abécassis, Benjamin; Testard, Fabienne; Spalla, Olivier
  • Nano Letters, Vol. 7, Issue 6
  • DOI: 10.1021/nl0707149

Unusual packing of soft-shelled nanocubes
journal, May 2019


The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals
journal, June 2015

  • Goodfellow, Brian W.; Yu, Yixuan; Bosoy, Christian A.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00946

Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays
journal, April 2011

  • Lee, Jong-Soo; Kovalenko, Maksym V.; Huang, Jing
  • Nature Nanotechnology, Vol. 6, Issue 6
  • DOI: 10.1038/nnano.2011.46

Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots
journal, June 2003

  • Redl, F. X.; Cho, K.-S.; Murray, C. B.
  • Nature, Vol. 423, Issue 6943, p. 968-971
  • DOI: 10.1038/nature01702

Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics
journal, April 2012

  • Choi, Ji-Hyuk; Fafarman, Aaron T.; Oh, Soong Ju
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl301104z

Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface
journal, July 2010

  • Dong, Angang; Chen, Jun; Vora, Patrick M.
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09188

Superfluorescence from lead halide perovskite quantum dot superlattices
journal, November 2018