DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems

Abstract

Abstract All‐perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide‐bandgap (WBG) perovskites with higher open‐circuit voltage ( V OC ) are essential to further improve the tandem solar cells’ performance. Here, a new 1.8 eV bandgap triple‐halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light‐induced magneto‐transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady‐state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V V OC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

Authors:
 [1];  [2];  [2];  [3];  [2];  [2];  [2];  [2];  [2];  [4];  [5];  [5];  [2];  [2];  [6];  [2];  [2];  [2]; ORCiD logo [2];  [7] more »;  [2];  [8];  [8];  [5];  [2];  [7];  [3];  [2];  [9]; ORCiD logo [10] « less
  1. Division Solar Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 12489 Berlin Germany, National Renewable Energy Laboratory Golden Colorado 80401 USA
  2. Division Solar Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 12489 Berlin Germany
  3. Institute of Physics and Astronomy University of Potsdam 14476 Potsdam‐Golm Germany
  4. POLYMAT University of the Basque Country UPV/EHU Av. Tolosa 72 Donostia‐San Sebastián 20018 Spain, IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain, POLYKEY s.l. Av. Tolosa 72 Donostia‐San Sebastián 20018 Spain
  5. Institute of Applied Physics University of Tübingen 72076 Tübingen Germany
  6. Materials, Chemical and Computational Sciences (MCCS) National Renewable Energy Laboratory Golden CO 80401 USA
  7. Clarendon Laboratory Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells University of Oxford Parks Road Oxford OX1 3PU UK
  8. Institute of Electronic Devices University of Wuppertal 42119 Wuppertal Germany, Wuppertal Center for Smart Materials &, Systems University of Wuppertal 42119 Wuppertal Germany
  9. Institute of Physics and Astronomy University of Potsdam 14476 Potsdam‐Golm Germany, Electronic Engineering Department The Chinese University of Hong Kong Hong Kong SAR China
  10. Division Solar Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 12489 Berlin Germany, Faculty of Electrical Engineering and Computer Science Technische Universität Berlin Berlin Germany
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; German Research Foundation (DFG); Engineering and Physical Sciences Research Council (EPSRC); Federal Ministry of Education and Research (BMBF); European Union (EU); Volkswagen Foundation
OSTI Identifier:
2228988
Alternate Identifier(s):
OSTI ID: 2229792; OSTI ID: 2274824
Report Number(s):
NREL/JA-5900-88317
Journal ID: ISSN 0935-9648; 2307743
Grant/Contract Number:  
AC3608GO28308; AC36-08GO28308; 03SF0540; 03SF0631; SPP2196; RI 1551/15-2
Resource Type:
Published Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 36 Journal Issue: 6; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
14 SOLAR ENERGY; all-perovskite tandem solar cells; piperazinium iodide; recombination losses; triple-halide wide-bandgap perovskite

Citation Formats

Yang, Fengjiu, Tockhorn, Philipp, Musiienko, Artem, Lang, Felix, Menzel, Dorothee, Macqueen, Rowan, Köhnen, Eike, Xu, Ke, Mariotti, Silvia, Mantione, Daniele, Merten, Lena, Hinderhofer, Alexander, Li, Bor, Wargulski, Dan R., Harvey, Steven P., Zhang, Jiahuan, Scheler, Florian, Berwig, Sebastian, Roß, Marcel, Thiesbrummel, Jarla, Al‐Ashouri, Amran, Brinkmann, Kai O., Riedl, Thomas, Schreiber, Frank, Abou‐Ras, Daniel, Snaith, Henry, Neher, Dieter, Korte, Lars, Stolterfoht, Martin, and Albrecht, Steve. Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems. Germany: N. p., 2023. Web. doi:10.1002/adma.202307743.
Yang, Fengjiu, Tockhorn, Philipp, Musiienko, Artem, Lang, Felix, Menzel, Dorothee, Macqueen, Rowan, Köhnen, Eike, Xu, Ke, Mariotti, Silvia, Mantione, Daniele, Merten, Lena, Hinderhofer, Alexander, Li, Bor, Wargulski, Dan R., Harvey, Steven P., Zhang, Jiahuan, Scheler, Florian, Berwig, Sebastian, Roß, Marcel, Thiesbrummel, Jarla, Al‐Ashouri, Amran, Brinkmann, Kai O., Riedl, Thomas, Schreiber, Frank, Abou‐Ras, Daniel, Snaith, Henry, Neher, Dieter, Korte, Lars, Stolterfoht, Martin, & Albrecht, Steve. Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems. Germany. https://doi.org/10.1002/adma.202307743
Yang, Fengjiu, Tockhorn, Philipp, Musiienko, Artem, Lang, Felix, Menzel, Dorothee, Macqueen, Rowan, Köhnen, Eike, Xu, Ke, Mariotti, Silvia, Mantione, Daniele, Merten, Lena, Hinderhofer, Alexander, Li, Bor, Wargulski, Dan R., Harvey, Steven P., Zhang, Jiahuan, Scheler, Florian, Berwig, Sebastian, Roß, Marcel, Thiesbrummel, Jarla, Al‐Ashouri, Amran, Brinkmann, Kai O., Riedl, Thomas, Schreiber, Frank, Abou‐Ras, Daniel, Snaith, Henry, Neher, Dieter, Korte, Lars, Stolterfoht, Martin, and Albrecht, Steve. Wed . "Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems". Germany. https://doi.org/10.1002/adma.202307743.
@article{osti_2228988,
title = {Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems},
author = {Yang, Fengjiu and Tockhorn, Philipp and Musiienko, Artem and Lang, Felix and Menzel, Dorothee and Macqueen, Rowan and Köhnen, Eike and Xu, Ke and Mariotti, Silvia and Mantione, Daniele and Merten, Lena and Hinderhofer, Alexander and Li, Bor and Wargulski, Dan R. and Harvey, Steven P. and Zhang, Jiahuan and Scheler, Florian and Berwig, Sebastian and Roß, Marcel and Thiesbrummel, Jarla and Al‐Ashouri, Amran and Brinkmann, Kai O. and Riedl, Thomas and Schreiber, Frank and Abou‐Ras, Daniel and Snaith, Henry and Neher, Dieter and Korte, Lars and Stolterfoht, Martin and Albrecht, Steve},
abstractNote = {Abstract All‐perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide‐bandgap (WBG) perovskites with higher open‐circuit voltage ( V OC ) are essential to further improve the tandem solar cells’ performance. Here, a new 1.8 eV bandgap triple‐halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light‐induced magneto‐transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady‐state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V V OC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.},
doi = {10.1002/adma.202307743},
journal = {Advanced Materials},
number = 6,
volume = 36,
place = {Germany},
year = {Wed Dec 06 00:00:00 EST 2023},
month = {Wed Dec 06 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.202307743

Save / Share:

Works referenced in this record:

Prospects for metal halide perovskite-based tandem solar cells
journal, May 2021


Carrier-resolved photo-Hall effect
journal, October 2019


Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite
journal, June 2019


Steric Engineering Enables Efficient and Photostable Wide‐Bandgap Perovskites for All‐Perovskite Tandem Solar Cells
journal, May 2022


Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics
journal, May 2018


Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
journal, July 2018


Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH 3 NH 3 PbI 2 Br Nanosheets via Thermal Decomposition
journal, August 2014

  • Zhao, Yixin; Zhu, Kai
  • Journal of the American Chemical Society, Vol. 136, Issue 35
  • DOI: 10.1021/ja5071398

The Impact of Atmosphere on Energetics of Lead Halide Perovskites
journal, May 2020

  • Hu, Zhanhao; Liu, Zonghao; Ono, Luis K.
  • Advanced Energy Materials, Vol. 10, Issue 24
  • DOI: 10.1002/aenm.202000908

Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells
journal, July 2023


Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact
journal, June 2022


Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization
journal, October 2021


Passivation, conductivity, and selectivity in solar cell contacts: Concepts and simulations based on a unified partial-resistances framework
journal, November 2019

  • Onno, Arthur; Chen, Christopher; Koswatta, Priyaranga
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5117201

Synthetic energy sensor AMPfret deciphers adenylate-dependent AMPK activation mechanism
journal, March 2019

  • Pelosse, Martin; Cottet-Rousselle, Cécile; Bidan, Cécile M.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08938-z

Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process
journal, January 2020

  • Yang, Yi; Liu, Cheng; Mahata, Arup
  • Energy & Environmental Science, Vol. 13, Issue 9
  • DOI: 10.1039/D0EE01833C

Rethinking the Role of Excess/Residual Lead Iodide in Perovskite Solar Cells
journal, March 2023

  • Gao, You; Raza, Hasan; Zhang, Zhengping
  • Advanced Functional Materials, Vol. 33, Issue 26
  • DOI: 10.1002/adfm.202215171

Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells
journal, October 2022


Impact of PbI 2 Passivation and Grain Size Engineering in CH 3 NH 3 PbI 3 Solar Absorbers as Revealed by Carrier‐Resolved Photo‐Hall Technique
journal, October 2019

  • Euvrard, Julie; Gunawan, Oki; Mitzi, David B.
  • Advanced Energy Materials, Vol. 9, Issue 47
  • DOI: 10.1002/aenm.201902706

Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells
journal, April 2019


Charge Carrier Trapping at Surface Defects of Perovskite Solar Cell Absorbers: A First-Principles Study
journal, January 2017


Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites
journal, October 2018


Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency
journal, November 2020

  • Li, Fengzhu; Deng, Xiang; Qi, Feng
  • Journal of the American Chemical Society, Vol. 142, Issue 47
  • DOI: 10.1021/jacs.0c09845

Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer
journal, March 2020


Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules
journal, May 2022


Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure
journal, April 2019

  • Gharibzadeh, Saba; Abdollahi Nejand, Bahram; Jakoby, Marius
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201803699

Rubidium Iodide Reduces Recombination Losses in Methylammonium‐Free Tin‐Lead Perovskite Solar Cells
journal, March 2023

  • Yang, Fengjiu; MacQueen, Rowan W.; Menzel, Dorothee
  • Advanced Energy Materials, Vol. 13, Issue 19
  • DOI: 10.1002/aenm.202204339

Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity
journal, January 2018

  • Shen, Heping; Duong, The; Peng, Jun
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE02627G

Oxidation-resistant all-perovskite tandem solar cells in substrate configuration
journal, March 2023


Understanding and Minimizing VOC Losses in All‐Perovskite Tandem Photovoltaics
journal, December 2022

  • Thiesbrummel, Jarla; Peña‐Camargo, Francisco; Brinkmann, Kai Oliver
  • Advanced Energy Materials, Vol. 13, Issue 3
  • DOI: 10.1002/aenm.202202674

Relaxed Current Matching Requirements in Highly Luminescent Perovskite Tandem Solar Cells and Their Fundamental Efficiency Limits
journal, January 2021


Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells
journal, January 2022

  • Hu, Shuaifeng; Otsuka, Kento; Murdey, Richard
  • Energy & Environmental Science, Vol. 15, Issue 5
  • DOI: 10.1039/D2EE00288D

All-perovskite tandem solar cells with improved grain surface passivation
journal, January 2022


Revisiting the Determination of the Valence Band Maximum and Defect Formation in Halide Perovskites for Solar Cells: Insights from Highly Sensitive Near–UV Photoemission Spectroscopy
journal, September 2021

  • Menzel, Dorothee; Tejada, Alvaro; Al-Ashouri, Amran
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 36
  • DOI: 10.1021/acsami.1c10171

Tin‐Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to the Solar Cell Efficiency of 21.74%
journal, May 2021

  • Kapil, Gaurav; Bessho, Takeru; Maekawa, Takatoshi
  • Advanced Energy Materials, Vol. 11, Issue 25
  • DOI: 10.1002/aenm.202101069

Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements
journal, August 2016


Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency
journal, July 2022


Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells
journal, July 2020


High‐Performance Flexible All‐Perovskite Tandem Solar Cells with Reduced V OC ‐Deficit in Wide‐Bandgap Subcell
journal, September 2022

  • Lai, Huagui; Luo, Jincheng; Zwirner, Yannick
  • Advanced Energy Materials, Vol. 12, Issue 45
  • DOI: 10.1002/aenm.202202438

Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer
journal, June 2022

  • Menzel, Dorothee; Al‐Ashouri, Amran; Tejada, Alvaro
  • Advanced Energy Materials, Vol. 12, Issue 30
  • DOI: 10.1002/aenm.202201109

Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells
journal, January 2019

  • Al-Ashouri, Amran; Magomedov, Artiom; Roß, Marcel
  • Energy & Environmental Science, Vol. 12, Issue 11
  • DOI: 10.1039/C9EE02268F

Deep Defect States in Wide-Band-Gap ABX 3 Halide Perovskites
journal, April 2019


Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites
journal, January 2021


Regulating surface potential maximizes voltage in all-perovskite tandems
journal, November 2022


Enabling Flexible All-Perovskite Tandem Solar Cells
journal, September 2019


Strain Relaxation and Light Management in Tin–Lead Perovskite Solar Cells to Achieve High Efficiencies
journal, July 2019


Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF x
journal, July 2022


Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide
journal, September 2016

  • Liao, Weiqiang; Zhao, Dewei; Yu, Yue
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b08337

Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems
journal, March 2020


Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
journal, December 2020


Perovskite–organic tandem solar cells with indium oxide interconnect
journal, April 2022


Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells
journal, July 2020


Quantitative analysis of the transient photoluminescence of CH 3 NH 3 PbI 3 /PC 61 BM heterojunctions by numerical simulations
journal, January 2018

  • Krogmeier, Benedikt; Staub, Florian; Grabowski, David
  • Sustainable Energy & Fuels, Vol. 2, Issue 5
  • DOI: 10.1039/C7SE00603A

Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency
journal, May 2020

  • Jošt, Marko; Kegelmann, Lukas; Korte, Lars
  • Advanced Energy Materials, Vol. 10, Issue 26
  • DOI: 10.1002/aenm.201904102

Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency
journal, April 2020

  • Shen, Heping; Walter, Daniel; Wu, Yiliang
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201902840

Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells
journal, December 2020


Compositional texture engineering for highly stable wide-bandgap perovskite solar cells
journal, December 2022


Improving interface quality for 1-cm2 all-perovskite tandem solar cells
journal, March 2023


Solar cell efficiency tables (version 62)
journal, June 2023

  • Green, Martin A.; Dunlop, Ewan D.; Yoshita, Masahiro
  • Progress in Photovoltaics: Research and Applications, Vol. 31, Issue 7
  • DOI: 10.1002/pip.3726

Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers
journal, November 2018


Slot-Die Coated Triple-Halide Perovskites for Efficient and Scalable Perovskite/Silicon Tandem Solar Cells
journal, September 2022


High-performance perovskite/Cu(In,Ga)Se 2 monolithic tandem solar cells
journal, August 2018


Efficient monolithic all-perovskite tandem solar modules with small cell-to-module derate
journal, August 2022