DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compositional texture engineering for highly stable wide-bandgap perovskite solar cells

Abstract

The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br–I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br–I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75–electron volt Br–I mixed WBG perovskite films with reduced defect density. Here, with this approach, we obtained 1.75–electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65°C). When further integrated with 1.25–electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [3];  [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [2]; ORCiD logo [1]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States). Chemistry and Nanoscience Center
  2. University of Toledo, OH (United States)
  3. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
  4. National Renewable Energy Laboratory (NREL), Golden, CO (United States). Chemistry and Nanoscience Center; University of Colorado, Boulder, CO (United States)
  5. National Renewable Energy Laboratory (NREL), Golden, CO (United States); University of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1907621
Report Number(s):
NREL/JA-5900-84644
Journal ID: ISSN 0036-8075; MainId:85417;UUID:6921f1c3-31cb-4c94-ac89-a0cf4ac64861;MainAdminID:68343
Grant/Contract Number:  
AC36-08GO28308; 00038266; EE0008837
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 378; Journal Issue: 6626; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; perovskite; stability; tandem solar cells; wide bandgap

Citation Formats

Jiang, Qi, Tong, Jinhui, Scheidt, Rebecca A., Wang, Xiaoming, Louks, Amy E., Xian, Yeming, Tirawat, Robert, Palmstrom, Axel F., Hautzinger, Matthew P., Harvey, Steven P., Johnston, Steve, Schelhas, Laura T., Larson, Bryon W., Warren, Emily L., Beard, Matthew C., Berry, Joseph J., Yan, Yanfa, and Zhu, Kai. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. United States: N. p., 2022. Web. doi:10.1126/science.adf0194.
Jiang, Qi, Tong, Jinhui, Scheidt, Rebecca A., Wang, Xiaoming, Louks, Amy E., Xian, Yeming, Tirawat, Robert, Palmstrom, Axel F., Hautzinger, Matthew P., Harvey, Steven P., Johnston, Steve, Schelhas, Laura T., Larson, Bryon W., Warren, Emily L., Beard, Matthew C., Berry, Joseph J., Yan, Yanfa, & Zhu, Kai. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. United States. https://doi.org/10.1126/science.adf0194
Jiang, Qi, Tong, Jinhui, Scheidt, Rebecca A., Wang, Xiaoming, Louks, Amy E., Xian, Yeming, Tirawat, Robert, Palmstrom, Axel F., Hautzinger, Matthew P., Harvey, Steven P., Johnston, Steve, Schelhas, Laura T., Larson, Bryon W., Warren, Emily L., Beard, Matthew C., Berry, Joseph J., Yan, Yanfa, and Zhu, Kai. Thu . "Compositional texture engineering for highly stable wide-bandgap perovskite solar cells". United States. https://doi.org/10.1126/science.adf0194. https://www.osti.gov/servlets/purl/1907621.
@article{osti_1907621,
title = {Compositional texture engineering for highly stable wide-bandgap perovskite solar cells},
author = {Jiang, Qi and Tong, Jinhui and Scheidt, Rebecca A. and Wang, Xiaoming and Louks, Amy E. and Xian, Yeming and Tirawat, Robert and Palmstrom, Axel F. and Hautzinger, Matthew P. and Harvey, Steven P. and Johnston, Steve and Schelhas, Laura T. and Larson, Bryon W. and Warren, Emily L. and Beard, Matthew C. and Berry, Joseph J. and Yan, Yanfa and Zhu, Kai},
abstractNote = {The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br–I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br–I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75–electron volt Br–I mixed WBG perovskite films with reduced defect density. Here, with this approach, we obtained 1.75–electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65°C). When further integrated with 1.25–electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.},
doi = {10.1126/science.adf0194},
journal = {Science},
number = 6626,
volume = 378,
place = {United States},
year = {Thu Dec 22 00:00:00 EST 2022},
month = {Thu Dec 22 00:00:00 EST 2022}
}

Works referenced in this record:

Composition-Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement
journal, July 2018

  • Zhou, Yang; Jia, Yong-Heng; Fang, Hong-Hua
  • Advanced Functional Materials, Vol. 28, Issue 35
  • DOI: 10.1002/adfm.201803130

Prospects for metal halide perovskite-based tandem solar cells
journal, May 2021


Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Globularity-Selected Large Molecules for a New Generation of Multication Perovskites
journal, August 2017

  • Gholipour, Somayeh; Ali, Abdollah Morteza; Correa-Baena, Juan-Pablo
  • Advanced Materials, Vol. 29, Issue 38
  • DOI: 10.1002/adma.201702005

Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface
journal, January 2017

  • Cho, Kyung Taek; Paek, Sanghyun; Grancini, Giulia
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE03182J

Metal halide perovskite tandem and multiple-junction photovoltaics
journal, November 2017

  • Eperon, Giles E.; Hörantner, Maximilian T.; Snaith, Henry J.
  • Nature Reviews Chemistry, Vol. 1, Issue 12
  • DOI: 10.1038/s41570-017-0095

Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells
journal, April 2017


Multi-cation perovskites prevent carrier reflection from grain surfaces
journal, February 2020

  • Saidaminov, Makhsud I.; Williams, Kristopher; Wei, Mingyang
  • Nature Materials, Vol. 19, Issue 4
  • DOI: 10.1038/s41563-019-0602-2

Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates
journal, November 2019

  • Dai, Xuezeng; Deng, Yehao; Van Brackle, Charles H.
  • Advanced Energy Materials, Vol. 10, Issue 1
  • DOI: 10.1002/aenm.201903108

Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications
journal, September 2014

  • Tidhar, Yaron; Edri, Eran; Weissman, Haim
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja505556s

Shift Happens . How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites
journal, June 2017


The Role of Dimethylammonium in Bandgap Modulation for Stable Halide Perovskites
journal, May 2020


Wide‐Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells
journal, March 2022


Fully Air-Bladed High-Efficiency Perovskite Photovoltaics
journal, February 2019


Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Single‐Junction and Tandem Solar Cells
journal, March 2022

  • Yu, Zhenhua; Chen, Xihan; Harvey, Steven P.
  • Advanced Materials, Vol. 34, Issue 16
  • DOI: 10.1002/adma.202110351

Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
journal, March 2018

  • Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania
  • Nature, Vol. 555, Issue 7697
  • DOI: 10.1038/nature25989

The role of halide oxidation in perovskite halide phase separation
journal, September 2021


Interface Optimization via Fullerene Blends Enables Open‐Circuit Voltages of 1.35 V in CH 3 NH 3 Pb(I 0.8 Br 0.2 ) 3 Solar Cells
journal, March 2021

  • Liu, Zhifa; Siekmann, Johanna; Klingebiel, Benjamin
  • Advanced Energy Materials, Vol. 11, Issue 16
  • DOI: 10.1002/aenm.202003386

Quantitative analysis of time-resolved microwave conductivity data
journal, November 2017

  • Reid, Obadiah G.; Moore, David T.; Li, Zhen
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 49
  • DOI: 10.1088/1361-6463/aa9559

Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
journal, March 2020


Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films
journal, May 2017


Surface reaction for efficient and stable inverted perovskite solar cells
journal, September 2022


Efficient and Stable Wide‐Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase‐Pure Intermediate
journal, December 2021


Ab initiomolecular dynamics for liquid metals
journal, January 1993


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure
journal, April 2019

  • Gharibzadeh, Saba; Abdollahi Nejand, Bahram; Jakoby, Marius
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201803699

Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond
journal, March 2022


Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells
journal, November 2018

  • Li, Chongwen; Song, Zhaoning; Zhao, Dewei
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201803135

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

All-perovskite tandem solar cells with improved grain surface passivation
journal, January 2022


Electronic structures and elastic properties of a family of metal-free perovskites
journal, January 2019

  • Li, Kai; Dong, Li-Yuan; Xu, Hao-Xiang
  • Materials Chemistry Frontiers, Vol. 3, Issue 8
  • DOI: 10.1039/C9QM00133F

Reduced Self-Doping of Perovskites Induced by Short Annealing for Efficient Solar Modules
journal, September 2020


Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films
journal, December 2019

  • Deng, Yehao; Van Brackle, Charles H.; Dai, Xuezeng
  • Science Advances, Vol. 5, Issue 12
  • DOI: 10.1126/sciadv.aax7537

Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
journal, September 2007

  • VandeVondele, Joost; Hutter, Jürg
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2770708

Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering
journal, September 2016


Passivating Detrimental DX Centers in CH 3 NH 3 PbI 3 for Reducing Nonradiative Recombination and Elongating Carrier Lifetime
journal, December 2019


Perovskite-based tandem solar cells gallop ahead
journal, March 2022


Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films
journal, August 2016


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS
journal, July 2019


Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
journal, August 2018


Enabling Flexible All-Perovskite Tandem Solar Cells
journal, September 2019


Separable dual-space Gaussian pseudopotentials
journal, July 1996


Iodine (I) Expulsion at Photoirradiated Mixed Halide Perovskite Interface. Should I Stay or Should I Go?
journal, May 2020


Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites
journal, February 2018

  • Kim, Junghwan; Saidaminov, Makhsud I.; Tan, Hairen
  • Advanced Materials, Vol. 30, Issue 13
  • DOI: 10.1002/adma.201706275

High efficiency perovskite quantum dot solar cells with charge separating heterostructure
journal, June 2019


Light-Induced Anion Phase Segregation in Mixed Halide Perovskites
journal, November 2017


Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
journal, December 2020


Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying
journal, May 2018


Perovskite Solar Cells: From Materials to Devices
journal, October 2014


High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating
journal, August 2020


Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells
journal, December 2020


Effects of grain boundaries on conversion efficiencies of single-crystal-like GaAs thin-film solar cells on flexible metal tapes
journal, September 2019


A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications
journal, January 2016

  • Zhao, Yixin; Zhu, Kai
  • Chemical Society Reviews, Vol. 45, Issue 3
  • DOI: 10.1039/C4CS00458B

Inactive (PbI 2 ) 2 RbCl stabilizes perovskite films for efficient solar cells
journal, July 2022


cp2k: atomistic simulations of condensed matter systems
journal, June 2013

  • Hutter, Jürg; Iannuzzi, Marcella; Schiffmann, Florian
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 1
  • DOI: 10.1002/wcms.1159

Deep Level Transient Fourier Spectroscopy (DLTFS)—A technique for the analysis of deep level properties
journal, December 1988