DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ethylene Carbonate–Free Electrolytes for High–Nickel Layered Oxide Cathodes in Lithium–Ion Batteries

Abstract

Abstract Layered lithium nickel oxide (LiNiO 2 ) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi 0.94 Co 0.06 O 2 ), capable of reaching a 235 mA h g −1 specific capacity. Pouch‐type graphite|LiNi 0.94 Co 0.06 O 2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of Texas, Austin, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); Welch Foundation; USDOE
OSTI Identifier:
2217332
Alternate Identifier(s):
OSTI ID: 1529430
Grant/Contract Number:  
EE0007762; F-1254; DE‐EE0007762
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 29; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; cathodes; ethylene carbonate-free electrolytes; high-nickel layered oxide cathodes; in situ X-ray diffraction; lithium-ion batteries; secondary-ion mass spectrometry

Citation Formats

Li, Wangda, Dolocan, Andrei, Li, Jianyu, Xie, Qiang, and Manthiram, Arumugam. Ethylene Carbonate–Free Electrolytes for High–Nickel Layered Oxide Cathodes in Lithium–Ion Batteries. United States: N. p., 2019. Web. doi:10.1002/aenm.201901152.
Li, Wangda, Dolocan, Andrei, Li, Jianyu, Xie, Qiang, & Manthiram, Arumugam. Ethylene Carbonate–Free Electrolytes for High–Nickel Layered Oxide Cathodes in Lithium–Ion Batteries. United States. https://doi.org/10.1002/aenm.201901152
Li, Wangda, Dolocan, Andrei, Li, Jianyu, Xie, Qiang, and Manthiram, Arumugam. Tue . "Ethylene Carbonate–Free Electrolytes for High–Nickel Layered Oxide Cathodes in Lithium–Ion Batteries". United States. https://doi.org/10.1002/aenm.201901152. https://www.osti.gov/servlets/purl/2217332.
@article{osti_2217332,
title = {Ethylene Carbonate–Free Electrolytes for High–Nickel Layered Oxide Cathodes in Lithium–Ion Batteries},
author = {Li, Wangda and Dolocan, Andrei and Li, Jianyu and Xie, Qiang and Manthiram, Arumugam},
abstractNote = {Abstract Layered lithium nickel oxide (LiNiO 2 ) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi 0.94 Co 0.06 O 2 ), capable of reaching a 235 mA h g −1 specific capacity. Pouch‐type graphite|LiNi 0.94 Co 0.06 O 2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.},
doi = {10.1002/aenm.201901152},
journal = {Advanced Energy Materials},
number = 29,
volume = 9,
place = {United States},
year = {Tue Jun 25 00:00:00 EDT 2019},
month = {Tue Jun 25 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 78 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of aluminum on the structural and electrochemical properties of LiNiO2
journal, April 2003


A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells
journal, November 2016

  • Ma, Lin; Glazier, S. L.; Petibon, R.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0191701jes

Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


Structural Stability of LiNiO 2 Cycled above 4.2 V
journal, April 2017


LixNiO2, a promising cathode for rechargeable lithium batteries
journal, March 1995


Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries
journal, January 2018

  • Kim, U. -H.; Jun, D. -W.; Park, K. -J.
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C8EE00227D

Thermally driven mesoscale chemomechanical interplay in Li 0.5 Ni 0.6 Mn 0.2 Co 0.2 O 2 cathode materials
journal, January 2018

  • Wei, Chenxi; Zhang, Yan; Lee, Sang-Jun
  • Journal of Materials Chemistry A, Vol. 6, Issue 45
  • DOI: 10.1039/C8TA08973F

Rechargeable LiNiO[sub 2]∕Carbon Cells
journal, January 1991

  • Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 138, Issue 8
  • DOI: 10.1149/1.2085950

Gas Evolution during Unwanted Lithium Plating in Li-Ion Cells with EC-Based or EC-Free Electrolytes
journal, January 2016

  • Liu, Q. Q.; Xiong, D. J.; Petibon, R.
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0711614jes

Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes
journal, October 2018

  • Freiberg, Anna T. S.; Roos, Matthias K.; Wandt, Johannes
  • The Journal of Physical Chemistry A, Vol. 122, Issue 45
  • DOI: 10.1021/acs.jpca.8b08079

Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: Li x Ni 1.02 O 2 and Li x Ni 0.89 Al 0.16 O 2 ( x = 0.50 and 0.30)
journal, November 2003

  • Guilmard, M.; Croguennec, L.; Denux, D.
  • Chemistry of Materials, Vol. 15, Issue 23
  • DOI: 10.1021/cm030059f

The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li[sub 0.5]CoO[sub 2]
journal, January 2001

  • MacNeil, D. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1407245

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Probing Surface Chemistry Changes Using LiCoO 2 -only Electrodes in Li-Ion Batteries
journal, January 2018

  • Gauthier, Magali; Karayaylali, Pinar; Giordano, Livia
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0431807jes

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Thermal Stability of the Li(Ni[sub 0.8]Co[sub 0.15]Al[sub 0.05])O[sub 2] Cathode in the Presence of Cell Components
journal, January 2006

  • Belharouak, I.; Vissers, D.; Amine, K.
  • Journal of The Electrochemical Society, Vol. 153, Issue 11
  • DOI: 10.1149/1.2336994

Structure and electrochemistry of LixMnyNi1−yO2
journal, October 1992


Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


A Systematic Study of Electrolyte Additives in Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 (NMC)/Graphite Pouch Cells
journal, January 2014

  • Wang, David Yaohui; Xia, Jian; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0511412jes

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Phase Relationships and Structural and Chemical Stabilities of Charged Li[sub 1−x]CoO[sub 2−δ] and Li[sub 1−x]Ni[sub 0.85]Co[sub 0.15]O[sub 2−δ] Cathodes
journal, January 2003

  • Venkatraman, S.; Shin, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1525430

Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes
journal, January 2018

  • Logan, E. R.; Tonita, Erin M.; Gering, K. L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0981803jes

Collapse of LiNi 1– xy Co x Mn y O 2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries
journal, March 2019

  • Li, Wangda; Asl, Hooman Yaghoobnejad; Xie, Qiang
  • Journal of the American Chemical Society, Vol. 141, Issue 13
  • DOI: 10.1021/jacs.8b13798

High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li[sub x]MO[sub y] Host Materials (M = Ni, Mn)
journal, January 2000

  • Aurbach, Doron; Gamolsky, Kira; Markovsky, Boris
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393357

Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability
journal, February 2018

  • Li, Wangda; Liu, Xiaoming; Celio, Hugo
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703154

Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides
journal, July 2018


Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
journal, March 2016

  • Busche, Martin R.; Drossel, Thomas; Leichtweiss, Thomas
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2470

Electrolyte System for High Voltage Li-Ion Cells
journal, January 2016

  • Petibon, Remi; Xia, Jian; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 163, Issue 13
  • DOI: 10.1149/2.0321613jes

Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells
journal, August 1994


Some Physical Properties of Ethylene Carbonate-Free Electrolytes
journal, January 2018

  • Xiong, D. J.; Bauer, M.; Ellis, L. D.
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0511802jes

Nickel-rich layered LiNi 1−x M x O 2 (M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity
journal, January 2015

  • Augustyn, Veronica; Therese, Soosairaj; Turner, Travis C.
  • Journal of Materials Chemistry A, Vol. 3, Issue 32
  • DOI: 10.1039/C5TA04637H

Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover
journal, May 2017


Prospect and Reality of Ni-Rich Cathode for Commercialization
journal, November 2017

  • Kim, Junhyeok; Lee, Hyomyung; Cha, Hyungyeon
  • Advanced Energy Materials, Vol. 8, Issue 6
  • DOI: 10.1002/aenm.201702028

Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Thermal Reactions Between Delithiated Lithium Nickelate and Electrolyte Solutions
journal, January 2002

  • Arai, Hajime; Tsuda, Masayuki; Saito, Keiichi
  • Journal of The Electrochemical Society, Vol. 149, Issue 4
  • DOI: 10.1149/1.1452114

High-Performance LiNiO 2 Cathodes with Practical Loading Cycled with Li metal Anodes in Fluoroethylene Carbonate-Based Electrolyte Solution
journal, May 2018

  • Markevich, Elena; Salitra, Gregory; Talyosef, Yosef
  • ACS Applied Energy Materials, Vol. 1, Issue 6
  • DOI: 10.1021/acsaem.8b00304

A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries
journal, January 2018

  • Kim, Junhyeok; Ma, Hyunsoo; Cha, Hyungyeon
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/C8EE00155C

A Mg-Doped High-Nickel Layered Oxide Cathode Enabling Safer, High-Energy-Density Li-Ion Batteries
journal, January 2019


Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells
journal, June 1993


Effects of Electrolyte Additives and Solvents on Unwanted Lithium Plating in Lithium-Ion Cells
journal, January 2017

  • Liu, Q. Q.; Petibon, R.; Du, C. Y.
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.1081706jes

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
journal, April 2017

  • Li, Wangda; Dolocan, Andrei; Oh, Pilgun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14589

Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences
journal, December 2017

  • Wang, Shaofei; Xu, Henghui; Li, Wangda
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b09531

The cycling properties of the LixNi1−yCoyO2 electrode
journal, April 1993