DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the phase diagram of 3D artificial spin-ice

Abstract

Artificial spin-ices consist of lithographic arrays of single-domain magnetic nanowires organised into frustrated lattices. These geometries are usually two-dimensional, allowing a direct exploration of physics associated with frustration, topology and emergence. Recently, three-dimensional geometries have been realised, in which transport of emergent monopoles can be directly visualised upon the surface. Here we carry out an exploration of the three-dimensional artificial spin-ice phase diagram, whereby dipoles are placed within a diamond-bond lattice geometry. We find a rich phase diagram, consisting of a double-charged monopole crystal, a single-charged monopole crystal and conventional spin-ice with pinch points associated with a Coulomb phase. In experimental demagnetised systems, broken symmetry forces formation of ferromagnetic stripes upon the surface, forbidding the lower energy double-charged monopole crystal. Instead, we observe crystallites of single magnetic charge, superimposed upon an ice background. The crystallites are found to form due to the distribution of magnetic charge around the 3D vertex, which locally favours monopole formation.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [2]
  1. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
  2. Cardiff Univ. (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1997179
Report Number(s):
LA-UR-22-32126
Journal ID: ISSN 2399-3650; TRN: US2405202
Grant/Contract Number:  
89233218CNA000001; PRD20190195; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Communications Physics
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2399-3650
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Ferromagnetism; Magnetic properties and materials

Citation Formats

Saccone, Michael, Van den Berg, Arjen, Harding, Edward, Singh, Shobhna, Giblin, Sean R., Flicker, Felix, and Ladak, Sam. Exploring the phase diagram of 3D artificial spin-ice. United States: N. p., 2023. Web. doi:10.1038/s42005-023-01338-2.
Saccone, Michael, Van den Berg, Arjen, Harding, Edward, Singh, Shobhna, Giblin, Sean R., Flicker, Felix, & Ladak, Sam. Exploring the phase diagram of 3D artificial spin-ice. United States. https://doi.org/10.1038/s42005-023-01338-2
Saccone, Michael, Van den Berg, Arjen, Harding, Edward, Singh, Shobhna, Giblin, Sean R., Flicker, Felix, and Ladak, Sam. Thu . "Exploring the phase diagram of 3D artificial spin-ice". United States. https://doi.org/10.1038/s42005-023-01338-2. https://www.osti.gov/servlets/purl/1997179.
@article{osti_1997179,
title = {Exploring the phase diagram of 3D artificial spin-ice},
author = {Saccone, Michael and Van den Berg, Arjen and Harding, Edward and Singh, Shobhna and Giblin, Sean R. and Flicker, Felix and Ladak, Sam},
abstractNote = {Artificial spin-ices consist of lithographic arrays of single-domain magnetic nanowires organised into frustrated lattices. These geometries are usually two-dimensional, allowing a direct exploration of physics associated with frustration, topology and emergence. Recently, three-dimensional geometries have been realised, in which transport of emergent monopoles can be directly visualised upon the surface. Here we carry out an exploration of the three-dimensional artificial spin-ice phase diagram, whereby dipoles are placed within a diamond-bond lattice geometry. We find a rich phase diagram, consisting of a double-charged monopole crystal, a single-charged monopole crystal and conventional spin-ice with pinch points associated with a Coulomb phase. In experimental demagnetised systems, broken symmetry forces formation of ferromagnetic stripes upon the surface, forbidding the lower energy double-charged monopole crystal. Instead, we observe crystallites of single magnetic charge, superimposed upon an ice background. The crystallites are found to form due to the distribution of magnetic charge around the 3D vertex, which locally favours monopole formation.},
doi = {10.1038/s42005-023-01338-2},
journal = {Communications Physics},
number = 1,
volume = 6,
place = {United States},
year = {Thu Aug 17 00:00:00 EDT 2023},
month = {Thu Aug 17 00:00:00 EDT 2023}
}

Works referenced in this record:

Direct observation of the ice rule in an artificial kagome spin ice
journal, March 2008


Observation of vortices and vortex stripes in a dipolar condensate
journal, October 2022


Artificial Square Ice and Related Dipolar Nanoarrays
journal, June 2006


Theory of Dipole Interaction in Crystals
journal, December 1946


Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects
journal, May 2017


Spin Ice, Fractionalization, and Topological Order
journal, March 2012


Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands
journal, March 2007

  • Wang, R. F.; Nisoli, C.; Freitas, R. S.
  • Nature, Vol. 446, Issue 7131
  • DOI: 10.1038/nature05607

Magnetic Coulomb Phase in the Spin Ice Ho2Ti2O7
journal, September 2009


Element-Specific X-Ray Phase Tomography of 3D Structures at the Nanoscale
journal, March 2015


Crystallites of magnetic charges in artificial spin ice
journal, August 2013

  • Zhang, Sheng; Gilbert, Ian; Nisoli, Cristiano
  • Nature, Vol. 500, Issue 7464
  • DOI: 10.1038/nature12399

Real-space imaging of phase transitions in bridged artificial kagome spin ice
journal, April 2022


Advances in artificial spin ice
journal, November 2019

  • Skjærvø, Sandra H.; Marrows, Christopher H.; Stamps, Robert L.
  • Nature Reviews Physics, Vol. 2, Issue 1
  • DOI: 10.1038/s42254-019-0118-3

Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice
journal, August 2021

  • Koraltan, Sabri; Slanovc, Florian; Bruckner, Florian
  • npj Computational Materials, Vol. 7, Issue 1
  • DOI: 10.1038/s41524-021-00593-7

Zero-point entropy in ‘spin ice’
journal, May 1999

  • Ramirez, A. P.; Hayashi, A.; Cava, R. J.
  • Nature, Vol. 399, Issue 6734
  • DOI: 10.1038/20619

Creation and measurement of long-lived magnetic monopole currents in spin ice
journal, February 2011

  • Giblin, S. R.; Bramwell, S. T.; Holdsworth, P. C. W.
  • Nature Physics, Vol. 7, Issue 3
  • DOI: 10.1038/nphys1896

Observation of magnetic fragmentation in spin ice
journal, April 2016

  • Petit, S.; Lhotel, E.; Canals, B.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3710

Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice
journal, November 2016

  • Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas
  • Nature, Vol. 540, Issue 7633
  • DOI: 10.1038/nature20155

Magnetic field driven dynamics in twisted bilayer artificial spin ice at superlattice angles
journal, October 2022

  • Begum Popy, Rehana; Frank, Julia; Stamps, Robert L.
  • Journal of Applied Physics, Vol. 132, Issue 13
  • DOI: 10.1063/5.0118078

Direct-write of free-form building blocks for artificial magnetic 3D lattices
journal, April 2018


Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice
journal, August 2010


Magnetic-Moment Fragmentation and Monopole Crystallization
journal, January 2014


Magnetic relaxation in rare-earth oxide pyrochlores
journal, September 2005

  • Ryzhkin, I. A.
  • Journal of Experimental and Theoretical Physics, Vol. 101, Issue 3
  • DOI: 10.1134/1.2103216

Rewritable artificial magnetic charge ice
journal, May 2016


Magnetic charge propagation upon a 3D artificial spin-ice
journal, May 2021


The magnetic structure factor of the square ice: A phenomenological description
journal, March 2021

  • Rougemaille, N.; Canals, B.
  • Applied Physics Letters, Vol. 118, Issue 11
  • DOI: 10.1063/5.0043520

Spin Ice State in Frustrated Magnetic Pyrochlore Materials
journal, November 2001


Observation of Coherent Spin Waves in a Three-Dimensional Artificial Spin Ice Structure
journal, May 2021


Switchable magnetic frustration in buckyball nanoarchitectures
journal, May 2021

  • Cheenikundil, Rajgowrav; Hertel, Riccardo
  • Applied Physics Letters, Vol. 118, Issue 21
  • DOI: 10.1063/5.0048936

Topological frustration of artificial spin ice
journal, January 2017

  • Drisko, Jasper; Marsh, Thomas; Cumings, John
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14009

Collective Ferromagnetism of Artificial Square Spin Ice
journal, August 2022


Long-Range Order at Low Temperatures in Dipolar Spin Ice
journal, July 2001


Demagnetization protocols for frustrated interacting nanomagnet arrays
journal, May 2007

  • Wang, R. F.; Li, J.; McConville, W.
  • Journal of Applied Physics, Vol. 101, Issue 9
  • DOI: 10.1063/1.2712528

Magnetic monopoles in spin ice
journal, January 2008

  • Castelnovo, C.; Moessner, R.; Sondhi, S. L.
  • Nature, Vol. 451, Issue 7174
  • DOI: 10.1038/nature06433

Realisation of a frustrated 3D magnetic nanowire lattice
journal, February 2019


Crystallizing Kagome Artificial Spin Ice
journal, July 2022


X-ray imaging of the magnetic configuration of a three-dimensional artificial spin ice building block
journal, October 2022

  • Pip, Petai; Treves, Samuel; Massey, Jamie R.
  • APL Materials, Vol. 10, Issue 10
  • DOI: 10.1063/5.0101797