DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synergizing plasmonic Au nanocages with 2D MoS 2 nanosheets for significant enhancement in photocatalytic hydrogen evolution

Abstract

Plasmonic enhancement of photocatalytic hydrogen evolution has been achieved under visible light illumination by integrating strongly plasmonic metal particles such as gold (Au) with semiconducting materials. To understand the effect of plasmon resonance on the photocatalytic hydrogen evolution reaction (HER), in this work, we study the hydrogen evolution reaction (HER) over Au nanocages with systematically tunable localized surface plasmon resonance (LSPR) properties dispersed on an Al2O3 support and covered with multiphasic 2D MoS2 nanosheets. It is interesting to observe that by tuning the LSPR wavelength of Au nanocages, an optimal enhancement in the photocatalytic HER can be obtained over the multiphasic 2D MoS2 nanosheets. In particular, when the LSPR wavelength of Au nanocages is close to the absorption edge of MoS2 nanosheets, a 40-fold increase is observed in the HER rate regarding bare MoS2. Time-resolved transient absorption spectroscopy was conducted to explicitly identify the mechanisms behind the Au/MoS2 system. The results suggest that near field enhancement (NFE) is the dominant LSPR process in this system and a detailed explanation of the working mechanism in this system is proposed. Governed by the NFE process, the energy of the surface plasma is transferred from Au nanocages to MoS2 nanosheets to promote electron–holemore » excitation in MoS2, and the efficiency reaches the maximum when the LSPR wavelength of Au nanocages matches the MoS2 light absorption edge, resulting in a significantly enhanced photocatalytic hydrogen yield compared to the bare MoS2 nanosheets and Au/MoS2 systems where the LSPR wavelengths of Au nanocages and MoS2 nanosheet absorption edge do not match. The learning from this work provides insights into the design of highly efficient photocatalysts based on plasmonic materials.« less

Authors:
 [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [1]; ORCiD logo [5]; ORCiD logo [1]
  1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  2. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA
  3. Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
  4. Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, USA
  5. Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1992149
Alternate Identifier(s):
OSTI ID: 1994626
Grant/Contract Number:  
AC02-06CH11357; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Name: Journal of Materials Chemistry. A Journal Volume: 11 Journal Issue: 31; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Peng, Rui, Ma, Xiaohan, Hood, Zachary D., Boulesbaa, Abdelaziz, Puretzky, Alexander A., Tong, Jianhua, and Wu, Zili. Synergizing plasmonic Au nanocages with 2D MoS 2 nanosheets for significant enhancement in photocatalytic hydrogen evolution. United Kingdom: N. p., 2023. Web. doi:10.1039/D3TA01657A.
Peng, Rui, Ma, Xiaohan, Hood, Zachary D., Boulesbaa, Abdelaziz, Puretzky, Alexander A., Tong, Jianhua, & Wu, Zili. Synergizing plasmonic Au nanocages with 2D MoS 2 nanosheets for significant enhancement in photocatalytic hydrogen evolution. United Kingdom. https://doi.org/10.1039/D3TA01657A
Peng, Rui, Ma, Xiaohan, Hood, Zachary D., Boulesbaa, Abdelaziz, Puretzky, Alexander A., Tong, Jianhua, and Wu, Zili. Tue . "Synergizing plasmonic Au nanocages with 2D MoS 2 nanosheets for significant enhancement in photocatalytic hydrogen evolution". United Kingdom. https://doi.org/10.1039/D3TA01657A.
@article{osti_1992149,
title = {Synergizing plasmonic Au nanocages with 2D MoS 2 nanosheets for significant enhancement in photocatalytic hydrogen evolution},
author = {Peng, Rui and Ma, Xiaohan and Hood, Zachary D. and Boulesbaa, Abdelaziz and Puretzky, Alexander A. and Tong, Jianhua and Wu, Zili},
abstractNote = {Plasmonic enhancement of photocatalytic hydrogen evolution has been achieved under visible light illumination by integrating strongly plasmonic metal particles such as gold (Au) with semiconducting materials. To understand the effect of plasmon resonance on the photocatalytic hydrogen evolution reaction (HER), in this work, we study the hydrogen evolution reaction (HER) over Au nanocages with systematically tunable localized surface plasmon resonance (LSPR) properties dispersed on an Al2O3 support and covered with multiphasic 2D MoS2 nanosheets. It is interesting to observe that by tuning the LSPR wavelength of Au nanocages, an optimal enhancement in the photocatalytic HER can be obtained over the multiphasic 2D MoS2 nanosheets. In particular, when the LSPR wavelength of Au nanocages is close to the absorption edge of MoS2 nanosheets, a 40-fold increase is observed in the HER rate regarding bare MoS2. Time-resolved transient absorption spectroscopy was conducted to explicitly identify the mechanisms behind the Au/MoS2 system. The results suggest that near field enhancement (NFE) is the dominant LSPR process in this system and a detailed explanation of the working mechanism in this system is proposed. Governed by the NFE process, the energy of the surface plasma is transferred from Au nanocages to MoS2 nanosheets to promote electron–hole excitation in MoS2, and the efficiency reaches the maximum when the LSPR wavelength of Au nanocages matches the MoS2 light absorption edge, resulting in a significantly enhanced photocatalytic hydrogen yield compared to the bare MoS2 nanosheets and Au/MoS2 systems where the LSPR wavelengths of Au nanocages and MoS2 nanosheet absorption edge do not match. The learning from this work provides insights into the design of highly efficient photocatalysts based on plasmonic materials.},
doi = {10.1039/D3TA01657A},
journal = {Journal of Materials Chemistry. A},
number = 31,
volume = 11,
place = {United Kingdom},
year = {Tue Aug 08 00:00:00 EDT 2023},
month = {Tue Aug 08 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/D3TA01657A

Save / Share:

Works referenced in this record:

Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF 3 COOAg as a Precursor
journal, June 2010

  • Zhang, Qiang; Li, Weiyang; Wen, Long-Ping
  • Chemistry - A European Journal, Vol. 16, Issue 33
  • DOI: 10.1002/chem.201000341

Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS 2 Heterostructures
journal, July 2016

  • Yu, Ying; Ji, Ziheng; Zu, Shuai
  • Advanced Functional Materials, Vol. 26, Issue 35
  • DOI: 10.1002/adfm.201601779

Ag@Cu 2 O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts
journal, December 2012

  • Li, Jiangtian; Cushing, Scott K.; Bright, Joeseph
  • ACS Catalysis, Vol. 3, Issue 1
  • DOI: 10.1021/cs300672f

Plasmon-induced resonance energy transfer for solar energy conversion
journal, August 2015


Exciton dynamics in atomically thin MoS 2 : Interexcitonic interaction and broadening kinetics
journal, August 2013


Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO 2 Films Loaded with Gold Nanoparticles
journal, May 2005

  • Tian, Yang; Tatsuma, Tetsu
  • Journal of the American Chemical Society, Vol. 127, Issue 20
  • DOI: 10.1021/ja042192u

Au nanoparticles on ultrathin MoS 2 sheets for plasmonic organic solar cells
journal, January 2014

  • Yang, Xi; Liu, Wenqing; Xiong, Min
  • J. Mater. Chem. A, Vol. 2, Issue 36
  • DOI: 10.1039/C4TA03178D

Graphene Analogues of Inorganic Layered Materials
journal, October 2013

  • Rao, C. N. R.; Ramakrishna Matte, H. S. S.; Maitra, Urmimala
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201301548

Quantitative Analysis of the Shape Effect of Thermoplasmonics in Gold Nanostructures
journal, April 2023


Exploiting the LSPR effect for an enhanced photocatalytic hydrogen evolution reaction
journal, January 2023

  • Ye, Ziwei; Xu, Zehong; Yue, Wenhui
  • Physical Chemistry Chemical Physics, Vol. 25, Issue 4
  • DOI: 10.1039/d2cp04582f

Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review
journal, April 2014

  • Das, Santanu; Kim, Moonkyung; Lee, Jo-won
  • Critical Reviews in Solid State and Materials Sciences, Vol. 39, Issue 4
  • DOI: 10.1080/10408436.2013.836075

Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement
journal, June 2021


Plasmonic Hot Electron Induced Structural Phase Transition in a MoS 2 Monolayer
journal, August 2014


Plasmonic enhancement of exciton and trion photoluminescence in 2D MoS2 decorated with Au nanorods: Impact of nonspherical shape
journal, June 2022

  • Irfan, Iqra; Golovynskyi, Sergii; Yeshchenko, Oleg A.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 140
  • DOI: 10.1016/j.physe.2022.115213

Improved CdS photocatalytic H2 evolution using Au–Ag nanoparticles with tunable plasmon-enhanced resonance energy transfer
journal, January 2020

  • Yue, Xuanyu; Hou, Juan; Zhang, Yifan
  • Dalton Transactions, Vol. 49, Issue 22
  • DOI: 10.1039/D0DT01110J

Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion
journal, January 2014

  • Wang, Changlong; Astruc, Didier
  • Chem. Soc. Rev., Vol. 43, Issue 20
  • DOI: 10.1039/C4CS00145A

Tunable Broadband Solar Energy Absorber Based on Monolayer Transition Metal Dichalcogenides Materials Using Au Nanocubes
journal, February 2020


Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting
journal, January 2018


Photoluminescence from Chemically Exfoliated MoS2
journal, December 2011

  • Eda, Goki; Yamaguchi, Hisato; Voiry, Damien
  • Nano Letters, Vol. 11, Issue 12, p. 5111-5116
  • DOI: 10.1021/nl201874w

Energy transfer in plasmonic photocatalytic composites
journal, February 2016

  • Ma, Xiang-Chao; Dai, Ying; Yu, Lin
  • Light: Science & Applications, Vol. 5, Issue 2
  • DOI: 10.1038/lsa.2016.17

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets
journal, June 2015

  • Shi, Yi; Wang, Jiong; Wang, Chen
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b01732

Influence of Plasmonic Au Nanoparticles on the Photoactivity of Fe2O3 Electrodes for Water Splitting
journal, January 2011

  • Thimsen, Elijah; Le Formal, Florian; Grätzel, Michael
  • Nano Letters, Vol. 11, Issue 1, p. 35-43
  • DOI: 10.1021/nl1022354

Electrocatalysis of gold-based nanoparticles and nanoclusters
journal, January 2021

  • Li, Chunjie; Chai, Osburg Jin Huang; Yao, Qiaofeng
  • Materials Horizons, Vol. 8, Issue 6
  • DOI: 10.1039/D0MH01947J

Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices
journal, January 2013

  • Gao, Min-Rui; Xu, Yun-Fei; Jiang, Jun
  • Chemical Society Reviews, Vol. 42, Issue 7
  • DOI: 10.1039/c2cs35310e

Filling Exciton Trap-States in Two-Dimensional Tungsten Disulfide (WS2) and Diselenide (WSe2) Monolayers
journal, March 2021

  • Ezgi Eroglu, Zeynep; Contreras, Dillon; Bahrami, Pouya
  • Nanomaterials, Vol. 11, Issue 3
  • DOI: 10.3390/nano11030770

Vacancy-Induced Ferromagnetism of MoS 2 Nanosheets
journal, February 2015

  • Cai, Liang; He, Jingfu; Liu, Qinghua
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja5120908

A review on frontiers in plasmonic nano-photocatalysts for hydrogen production
journal, April 2019

  • Reddy, N. Lakshmana; Rao, V. Navakoteswara; Vijayakumar, M.
  • International Journal of Hydrogen Energy, Vol. 44, Issue 21
  • DOI: 10.1016/j.ijhydene.2019.02.120

Anomalous Lattice Vibrations of Single- and Few-Layer MoS 2
journal, March 2010

  • Lee, Changgu; Yan, Hugen; Brus, Louis E.
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn1003937

Intercalation chemistry of molybdenum disulfide
journal, January 2002


Single-particle studies on plasmon enhanced photoluminescence of monolayer MoS2 by gold nanoparticles of different shapes
journal, December 2021

  • Garai, Monalisa; Zhu, Ziyu; Shi, Jia
  • The Journal of Chemical Physics, Vol. 155, Issue 23
  • DOI: 10.1063/5.0073754

Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2
journal, April 2014

  • Lin, Yung-Chang; Dumcenco, Dumitru O.; Huang, Ying-Sheng
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.64

Synthetic approaches to the molybdenum sulfide materials
journal, January 2008


A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide
journal, February 2008

  • Awazu, Koichi; Fujimaki, Makoto; Rockstuhl, Carsten
  • Journal of the American Chemical Society, Vol. 130, Issue 5
  • DOI: 10.1021/ja076503n

Gold Nanocages: Synthesis, Properties, and Applications
journal, December 2008

  • Skrabalak, Sara E.; Chen, Jingyi; Sun, Yugang
  • Accounts of Chemical Research, Vol. 41, Issue 12
  • DOI: 10.1021/ar800018v

Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2
journal, July 2012

  • Eda, Goki; Fujita, Takeshi; Yamaguchi, Hisato
  • ACS Nano, Vol. 6, Issue 8, p. 7311-7317
  • DOI: 10.1021/nn302422x

Characterization of few-layer 1T-MoSe 2 and its superior performance in the visible-light induced hydrogen evolution reaction
journal, September 2014

  • Gupta, Uttam; Naidu, B. S.; Maitra, Urmimala
  • APL Materials, Vol. 2, Issue 9
  • DOI: 10.1063/1.4892976

Structures and Phase Transition of a MoS 2 Monolayer
journal, January 2014

  • Kan, M.; Wang, J. Y.; Li, X. W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 3
  • DOI: 10.1021/jp4076355

Ultrafast dynamics of exciton formation and decay in two-dimensional tungsten disulfide (2D-WS2) monolayers
journal, January 2020

  • Eroglu, Zeynep Ezgi; Comegys, Olivia; Quintanar, Leo S.
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 30
  • DOI: 10.1039/D0CP03220D

Semiconducting Metal Oxide Photonic Crystal Plasmonic Photocatalysts
journal, February 2020

  • Collins, Gillian; Lonergan, Alex; McNulty, David
  • Advanced Materials Interfaces, Vol. 7, Issue 8
  • DOI: 10.1002/admi.201901805

Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films
journal, November 2015

  • Yu, Yiling; Yu, Yifei; Cai, Yongqing
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16996

An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
journal, February 2013

  • Mubeen, Syed; Lee, Joun; Singh, Nirala
  • Nature Nanotechnology, Vol. 8, Issue 4
  • DOI: 10.1038/nnano.2013.18

Light trapping in mesoporous solar cells with plasmonic nanostructures
journal, January 2016

  • Erwin, William R.; Zarick, Holly F.; Talbert, Eric M.
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03847B

Plasmonic Pumping of Excitonic Photoluminescence in Hybrid MoS 2 –Au Nanostructures
journal, November 2014

  • Najmaei, Sina; Mlayah, Adnen; Arbouet, Arnaud
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn5056942

Facile synthesis of Ag nanocubes and Au nanocages
journal, September 2007


Au-MoS 2 Hybrids as Hydrogen Evolution Electrocatalysts
journal, August 2019

  • Bar-Ziv, Ronen; Ranjan, Priyadarshi; Lavie, Anna
  • ACS Applied Energy Materials, Vol. 2, Issue 8
  • DOI: 10.1021/acsaem.9b01147

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas
journal, April 2021


Observation of two distinct negative trions in tungsten disulfide monolayers
journal, September 2015


Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151