DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse

Abstract

Ice shelf collapse reduces buttressing and enables grounded glaciers to contribute more rapidly to sea-level rise in a warming climate. The abrupt collapses of the Larsen A (1995) and B (2002) ice shelves on the Antarctic Peninsula (AP) occurred, at least for Larsen B, when long-period ocean swells damaged the calving front and the ice shelf was inundated with melt lakes that led to large-scale hydrofracture cascades. During collapse, field and satellite observations indicate föhn winds were present on both ice shelves. Here we use a regional climate model and machine learning analyses to evaluate the contributory roles of föhn winds and associated melt events prior to and during the collapses for ice shelves on the AP. Föhn winds caused about 25 % ± 3 % of the total annual melt in just 9 d on Larsen A prior to and during collapse and were present during the Larsen B collapse, which helped form extensive melt lakes. At the same time, the off-coast wind direction created by föhn winds helped melt and physically push sea ice away from the ice shelf calving fronts that allowed long-period ocean swells to reach and damage the front, which has been theorized to havemore » ultimately triggered collapse. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds over a large spatial extent and near the calving front, whereas SCAR inlet and the Larsen C ice shelves are affected less by föhn-wind-induced melt and do not experience large-scale melt ponds. These results suggest SCAR inlet and the Larsen C ice shelves may be less likely to experience rapid collapse due to föhn-driven melt so long as surface temperatures and föhn occurrence remain within historical bounds.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [3]
  1. University of California, Irvine, CA (United States)
  2. Utrecht University (Netherlands)
  3. Instituto Antártico Argentino, Buenos Aires (Argentina)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States); Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); Netherlands Organisation for Scientific Research (NWO)
OSTI Identifier:
1981305
Grant/Contract Number:  
SC0019278; NRT-1633631; 80NSSC17K0540; VI.Veni.192.083
Resource Type:
Accepted Manuscript
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Name: The Cryosphere (Online); Journal Volume: 16; Journal Issue: 4; Journal ID: ISSN 1994-0424
Publisher:
Copernicus Publications, EGU
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Laffin, Matthew K., Zender, Charles S., van Wessem, Melchior, and Marinsek, Sebastián. The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse. United States: N. p., 2022. Web. doi:10.5194/tc-16-1369-2022.
Laffin, Matthew K., Zender, Charles S., van Wessem, Melchior, & Marinsek, Sebastián. The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse. United States. https://doi.org/10.5194/tc-16-1369-2022
Laffin, Matthew K., Zender, Charles S., van Wessem, Melchior, and Marinsek, Sebastián. Wed . "The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse". United States. https://doi.org/10.5194/tc-16-1369-2022. https://www.osti.gov/servlets/purl/1981305.
@article{osti_1981305,
title = {The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse},
author = {Laffin, Matthew K. and Zender, Charles S. and van Wessem, Melchior and Marinsek, Sebastián},
abstractNote = {Ice shelf collapse reduces buttressing and enables grounded glaciers to contribute more rapidly to sea-level rise in a warming climate. The abrupt collapses of the Larsen A (1995) and B (2002) ice shelves on the Antarctic Peninsula (AP) occurred, at least for Larsen B, when long-period ocean swells damaged the calving front and the ice shelf was inundated with melt lakes that led to large-scale hydrofracture cascades. During collapse, field and satellite observations indicate föhn winds were present on both ice shelves. Here we use a regional climate model and machine learning analyses to evaluate the contributory roles of föhn winds and associated melt events prior to and during the collapses for ice shelves on the AP. Föhn winds caused about 25 % ± 3 % of the total annual melt in just 9 d on Larsen A prior to and during collapse and were present during the Larsen B collapse, which helped form extensive melt lakes. At the same time, the off-coast wind direction created by föhn winds helped melt and physically push sea ice away from the ice shelf calving fronts that allowed long-period ocean swells to reach and damage the front, which has been theorized to have ultimately triggered collapse. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds over a large spatial extent and near the calving front, whereas SCAR inlet and the Larsen C ice shelves are affected less by föhn-wind-induced melt and do not experience large-scale melt ponds. These results suggest SCAR inlet and the Larsen C ice shelves may be less likely to experience rapid collapse due to föhn-driven melt so long as surface temperatures and föhn occurrence remain within historical bounds.},
doi = {10.5194/tc-16-1369-2022},
journal = {The Cryosphere (Online)},
number = 4,
volume = 16,
place = {United States},
year = {Wed Apr 13 00:00:00 EDT 2022},
month = {Wed Apr 13 00:00:00 EDT 2022}
}

Works referenced in this record:

Firn air depletion as a precursor of Antarctic ice-shelf collapse
journal, January 2014

  • Kuipers Munneke, Peter; Ligtenberg, Stefan R. M.; Van Den Broeke, Michiel R.
  • Journal of Glaciology, Vol. 60, Issue 220
  • DOI: 10.3189/2014JoG13J183

Greenland Surface Melt Dominated by Solar and Sensible Heating
journal, April 2021

  • Wang, Wenshan; Zender, Charles S.; van As, Dirk
  • Geophysical Research Letters, Vol. 48, Issue 7
  • DOI: 10.1029/2020GL090653

Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations
journal, February 2021


The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall: THE SAM'S IMPACT ON FUTURE SH RAINFALL
journal, July 2016

  • Lim, Eun-Pa; Hendon, Harry H.; Arblaster, Julie M.
  • Geophysical Research Letters, Vol. 43, Issue 13
  • DOI: 10.1002/2016GL069453

Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds
journal, November 2014


Impacts of strong wind events on sea ice and water mass properties in Antarctic coastal polynyas
journal, July 2021


Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years
journal, February 2010


The Effect of Foehn‐Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula
journal, April 2019

  • Datta, Rajashree Tri; Tedesco, Marco; Fettweis, Xavier
  • Geophysical Research Letters, Vol. 46, Issue 7
  • DOI: 10.1029/2018GL080845

Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994–2016
journal, May 2018

  • Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.
  • Geophysical Research Letters, Vol. 45, Issue 9
  • DOI: 10.1002/2017GL076652

Recent Retreat of Wilkins Ice Shelf Reveals New Insights in Ice Shelf Breakup Mechanisms
journal, April 2009


Climatology and Evolution of the Antarctic Peninsula Föhn Wind‐Induced Melt Regime From 1979–2018
journal, February 2021

  • Laffin, M. K.; Zender, C. S.; Singh, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 4
  • DOI: 10.1029/2020JD033682

Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment
journal, September 2020

  • Lhermitte, Stef; Sun, Sainan; Shuman, Christopher
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 40
  • DOI: 10.1073/pnas.1912890117

Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell
journal, June 2018


Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes: LARSEN B CHAIN REACTION LAKE DRAINAGE
journal, November 2013

  • Banwell, Alison F.; MacAyeal, Douglas R.; Sergienko, Olga V.
  • Geophysical Research Letters, Vol. 40, Issue 22
  • DOI: 10.1002/2013GL057694

Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history
journal, August 2012

  • Mulvaney, Robert; Abram, Nerilie J.; Hindmarsh, Richard C. A.
  • Nature, Vol. 489, Issue 7414
  • DOI: 10.1038/nature11391

A Speed Limit on Ice Shelf Collapse Through Hydrofracture
journal, November 2019

  • Robel, Alexander A.; Banwell, Alison F.
  • Geophysical Research Letters, Vol. 46, Issue 21
  • DOI: 10.1029/2019GL084397

The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica
journal, April 2018

  • Turton, Jenny V.; Kirchgaessner, Amelie; Ross, Andrew N.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 144, Issue 713
  • DOI: 10.1002/qj.3284

A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus?
journal, June 2021


A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse
journal, January 2008


Foehn winds link climate-driven warming to ice shelf evolution in Antarctica: FOEHN WINDS LINK CLIMATE-DRIVEN WARMING
journal, November 2015

  • Cape, M. R.; Vernet, Maria; Skvarca, Pedro
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 21
  • DOI: 10.1002/2015JD023465

Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula
journal, January 2009


The air content of Larsen Ice Shelf
journal, May 2011

  • Holland, Paul R.; Corr, Hugh F. J.; Pritchard, Hamish D.
  • Geophysical Research Letters, Vol. 38, Issue 10
  • DOI: 10.1029/2011GL047245

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula
journal, January 2000


Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica
journal, January 2004


Strong surface melting preceded collapse of Antarctic Peninsula ice shelf: MELTING ON ANTARCTIC ICE SHELVES
journal, June 2005


A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling
journal, May 2018

  • Wiesenekker, Jasper; Kuipers Munneke, Peter; van den Broeke, Michiel
  • Atmosphere, Vol. 9, Issue 5
  • DOI: 10.3390/atmos9050172

The Impact of Föhn Winds on Surface Energy Balance During the 2010-2011 Melt Season Over Larsen C Ice Shelf, Antarctica: Föhn Winds and Larsen C Ice Shelf
journal, November 2017

  • King, J. C.; Kirchgaessner, A.; Bevan, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 22
  • DOI: 10.1002/2017JD026809

Calving fluxes and basal melt rates of Antarctic ice shelves
journal, September 2013

  • Depoorter, M. A.; Bamber, J. L.; Griggs, J. A.
  • Nature, Vol. 502, Issue 7469
  • DOI: 10.1038/nature12567

Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice: A PROCESS ENABLING MELT POND FORMATION
journal, January 2017

  • Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.
  • Journal of Geophysical Research: Oceans, Vol. 122, Issue 1
  • DOI: 10.1002/2016JC011994

Massive subsurface ice formed by refreezing of ice-shelf melt ponds
journal, June 2016

  • Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11897

Ice-Shelf Melting Around Antarctica
journal, June 2013


Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface Energy Budget Regimes and the Impact of Foehn
journal, August 2020

  • Elvidge, Andrew D.; Kuipers Munneke, Peter; King, John C.
  • Journal of Geophysical Research: Atmospheres, Vol. 125, Issue 17
  • DOI: 10.1029/2020JD032463

Evolution of Supraglacial Lakes on the Larsen B Ice Shelf in the Decades Before it Collapsed
journal, February 2020

  • Leeson, A. A.; Forster, E.; Rice, A.
  • Geophysical Research Letters, Vol. 47, Issue 4
  • DOI: 10.1029/2019GL085591

The role of cooperative iceberg capsize in ice-shelf disintegration
journal, January 2013

  • Burton, Justin C.; Cathles, L. Mac; Wilder, W. Grant
  • Annals of Glaciology, Vol. 54, Issue 63
  • DOI: 10.3189/2013AoG63A436

Satellite-based estimates of Antarctic surface meltwater fluxes: SATELLITE-BASED ANTARCTIC MELT FLUXES
journal, December 2013

  • Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.
  • Geophysical Research Letters, Vol. 40, Issue 23
  • DOI: 10.1002/2013GL058138

Foehn jets over the Larsen C Ice Shelf, Antarctica
journal, June 2014

  • Elvidge, Andrew D.; Renfrew, Ian A.; King, John C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 141, Issue 688
  • DOI: 10.1002/qj.2382

Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study
journal, January 2014

  • Banwell, Alison F.; Caballero, Martamaria; Arnold, Neil S.
  • Annals of Glaciology, Vol. 55, Issue 66
  • DOI: 10.3189/2014AoG66A049

Intense Winter Surface Melt on an Antarctic Ice Shelf
journal, May 2018

  • Kuipers Munneke, P.; Luckman, A. J.; Bevan, S. L.
  • Geophysical Research Letters, Vol. 45, Issue 15
  • DOI: 10.1029/2018GL077899

Antarctic surface hydrology and impacts on ice-sheet mass balance
journal, November 2018


Ice-shelf buttressing and the stability of marine ice sheets
journal, January 2013


Does high-resolution modelling improve the spatial analysis of föhn flow over the Larsen C Ice Shelf?
journal, July 2017

  • Turton, J. V.; Kirchgaessner, A.; Ross, A. N.
  • Weather, Vol. 72, Issue 7
  • DOI: 10.1002/wea.3028

Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure
journal, February 2015

  • Pollard, David; DeConto, Robert M.; Alley, Richard B.
  • Earth and Planetary Science Letters, Vol. 412
  • DOI: 10.1016/j.epsl.2014.12.035

Evolving Instability of the Scar Inlet Ice Shelf based on Sequential Landsat Images Spanning 2005–2018
journal, December 2019

  • Qiao, Gang; Li, Yanjun; Guo, Song
  • Remote Sensing, Vol. 12, Issue 1
  • DOI: 10.3390/rs12010036

Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula
journal, January 1998


Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf
journal, December 2016

  • Lenaerts, J. T. M.; Lhermitte, S.; Drews, R.
  • Nature Climate Change, Vol. 7, Issue 1
  • DOI: 10.1038/nclimate3180

Simulation and Projection of the Southern Hemisphere Annular Mode in CMIP5 Models
journal, December 2013


Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula
journal, January 2004


The Impact of Föhn Conditions Across the Antarctic Peninsula on Local Meteorology Based on AWS Measurements
journal, February 2021

  • Kirchgaessner, Amélie; King, John C.; Anderson, Philip S.
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 4
  • DOI: 10.1029/2020JD033748

Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios
journal, October 2015

  • Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.
  • Nature Geoscience, Vol. 8, Issue 12
  • DOI: 10.1038/ngeo2563

Antarctic ice-sheet loss driven by basal melting of ice shelves
journal, April 2012

  • Pritchard, H. D.; Ligtenberg, S. R. M.; Fricker, H. A.
  • Nature, Vol. 484, Issue 7395
  • DOI: 10.1038/nature10968

Calving and rifting on the McMurdo Ice Shelf, Antarctica
journal, July 2017

  • Banwell, Alison F.; Willis, Ian C.; Macdonald, Grant J.
  • Annals of Glaciology, Vol. 58, Issue 75pt1
  • DOI: 10.1017/aog.2017.12

Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data
journal, April 2020

  • Bozkurt, Deniz; Bromwich, David H.; Carrasco, Jorge
  • Advances in Atmospheric Sciences, Vol. 37, Issue 5
  • DOI: 10.1007/s00376-020-9183-x

The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica: Suture zones in Larsen C
journal, March 2014

  • McGrath, Daniel; Steffen, Konrad; Holland, Paul R.
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 3
  • DOI: 10.1002/2013JF002935

Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula
journal, January 2012

  • Kuipers Munneke, P.; van den Broeke, M. R.; King, J. C.
  • The Cryosphere, Vol. 6, Issue 2
  • DOI: 10.5194/tc-6-353-2012

Rapid Collapse of Northern Larsen Ice Shelf, Antarctica
journal, February 1996


Evolution of the Southern Annular Mode during the past millennium
journal, May 2014

  • Abram, Nerilie J.; Mulvaney, Robert; Vimeux, Françoise
  • Nature Climate Change, Vol. 4, Issue 7
  • DOI: 10.1038/nclimate2235

Regional climate of the Larsen B embayment 1980–2014
journal, June 2017

  • Leeson, A. A.; Van Wessem, J. M.; Ligtenberg, S. R. M.
  • Journal of Glaciology, Vol. 63, Issue 240
  • DOI: 10.1017/jog.2017.39

Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68
journal, September 2021

  • Larour, E.; Rignot, E.; Poinelli, M.
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 40
  • DOI: 10.1073/pnas.2105080118

Ice shelf basal melt rates around Antarctica from simulations and observations: ICE SHELF BASAL MELT AROUND ANTARCTICA
journal, February 2016

  • Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.
  • Journal of Geophysical Research: Oceans, Vol. 121, Issue 2
  • DOI: 10.1002/2015JC011117

Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf
journal, January 2004


Katabatic wind forcing of the Terra Nova Bay polynya
journal, January 1984

  • Bromwich, David H.; Kurtz, Dennis D.
  • Journal of Geophysical Research, Vol. 89, Issue C3
  • DOI: 10.1029/JC089iC03p03561

Direct measurements of ice-shelf flexure caused by surface meltwater ponding and drainage
journal, February 2019


Foehn Event Triggered by an Atmospheric River Underlies Record-Setting Temperature Along Continental Antarctica
journal, April 2018

  • Bozkurt, D.; Rondanelli, R.; Marín, J. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 8
  • DOI: 10.1002/2017JD027796

Centuries of intense surface melt on Larsen C Ice Shelf
journal, December 2017


Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties
journal, June 2018


Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica
journal, February 1998

  • Doake, C. S. M.; Corr, H. F. J.; Rott, H.
  • Nature, Vol. 391, Issue 6669
  • DOI: 10.1038/35832

Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves
journal, January 2014

  • Grosvenor, D. P.; King, J. C.; Choularton, T. W.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 18
  • DOI: 10.5194/acp-14-9481-2014

Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models: Surface energy budget of Larsen C
journal, February 2015

  • King, J. C.; Gadian, A.; Kirchgaessner, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 4
  • DOI: 10.1002/2014JD022604

Historical Arctic and Antarctic Surface Observational Data, Version 1
dataset, January 2004

  • Stroeve, Julienne; Shuman, Christopher
  • NASA National Snow and Ice Data Center Distributed Active Archive Center
  • DOI: 10.5067/4din375awfio

Regional Atmospheric Climate Model 2 (RACMO2), version 2.3p2
dataset, January 2020