DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron scattering study of polyamorphic THF·17(H 2 O) – toward a generalized picture of amorphous states and structures derived from clathrate hydrates

Abstract

From crystalline tetrahydrofuran clathrate hydrate, THF–CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF–CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77–140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF–CH and liquid THF·17H2O solution (~2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water–water correlations (less dense local water structure) and guest–water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest–host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ~23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified andmore » resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ~18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [3];  [4]; ORCiD logo [4];  [4]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
  2. Department of Physics, Umeå University, SE-90187 Umeå, Sweden
  3. Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
  4. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  5. ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxon, OX11 7XN, UK, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK
  6. ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxon, OX11 7XN, UK
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1974663
Alternate Identifier(s):
OSTI ID: 1994623
Grant/Contract Number:  
AC02-06CH11357; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP Journal Volume: 25 Journal Issue: 21; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Brant Carvalho, Paulo H. B., Ivanov, Mikhail, Andersson, Ove, Loerting, Thomas, Bauer, Marion, Tulk, Chris A., Haberl, Bianca, Daemen, Luke L., Molaison, Jamie J., Amann-Winkel, Katrin, Lyubartsev, Alexander P., Bull, Craig L., Funnell, Nicholas P., and Häussermann, Ulrich. Neutron scattering study of polyamorphic THF·17(H 2 O) – toward a generalized picture of amorphous states and structures derived from clathrate hydrates. United Kingdom: N. p., 2023. Web. doi:10.1039/D3CP00539A.
Brant Carvalho, Paulo H. B., Ivanov, Mikhail, Andersson, Ove, Loerting, Thomas, Bauer, Marion, Tulk, Chris A., Haberl, Bianca, Daemen, Luke L., Molaison, Jamie J., Amann-Winkel, Katrin, Lyubartsev, Alexander P., Bull, Craig L., Funnell, Nicholas P., & Häussermann, Ulrich. Neutron scattering study of polyamorphic THF·17(H 2 O) – toward a generalized picture of amorphous states and structures derived from clathrate hydrates. United Kingdom. https://doi.org/10.1039/D3CP00539A
Brant Carvalho, Paulo H. B., Ivanov, Mikhail, Andersson, Ove, Loerting, Thomas, Bauer, Marion, Tulk, Chris A., Haberl, Bianca, Daemen, Luke L., Molaison, Jamie J., Amann-Winkel, Katrin, Lyubartsev, Alexander P., Bull, Craig L., Funnell, Nicholas P., and Häussermann, Ulrich. Wed . "Neutron scattering study of polyamorphic THF·17(H 2 O) – toward a generalized picture of amorphous states and structures derived from clathrate hydrates". United Kingdom. https://doi.org/10.1039/D3CP00539A.
@article{osti_1974663,
title = {Neutron scattering study of polyamorphic THF·17(H 2 O) – toward a generalized picture of amorphous states and structures derived from clathrate hydrates},
author = {Brant Carvalho, Paulo H. B. and Ivanov, Mikhail and Andersson, Ove and Loerting, Thomas and Bauer, Marion and Tulk, Chris A. and Haberl, Bianca and Daemen, Luke L. and Molaison, Jamie J. and Amann-Winkel, Katrin and Lyubartsev, Alexander P. and Bull, Craig L. and Funnell, Nicholas P. and Häussermann, Ulrich},
abstractNote = {From crystalline tetrahydrofuran clathrate hydrate, THF–CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF–CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77–140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF–CH and liquid THF·17H2O solution (~2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water–water correlations (less dense local water structure) and guest–water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest–host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ~23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified and resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ~18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.},
doi = {10.1039/D3CP00539A},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 21,
volume = 25,
place = {United Kingdom},
year = {Wed May 31 00:00:00 EDT 2023},
month = {Wed May 31 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/D3CP00539A

Save / Share:

Works referenced in this record:

How many amorphous ices are there?
journal, January 2011

  • Loerting, Thomas; Winkel, Katrin; Seidl, Markus
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 19
  • DOI: 10.1039/c0cp02600j

Transitions in pressure-amorphized clathrate hydrates akin to those of amorphous ices
journal, July 2019

  • Andersson, Ove; Brant Carvalho, Paulo H. B.; Hsu, Ying-Jui
  • The Journal of Chemical Physics, Vol. 151, Issue 1
  • DOI: 10.1063/1.5096981

‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids
journal, August 1984

  • Mishima, O.; Calvert, L. D.; Whalley, E.
  • Nature, Vol. 310, Issue 5976
  • DOI: 10.1038/310393a0

A potential model for the study of ices and amorphous water: TIP4P/Ice
journal, June 2005

  • Abascal, J. L. F.; Sanz, E.; García Fernández, R.
  • The Journal of Chemical Physics, Vol. 122, Issue 23
  • DOI: 10.1063/1.1931662

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Composition of Tetrahydrofuran Hydrate and the Effect of Pressure on the Decomposition
journal, August 1971

  • Gough, S. R.; Davidson, D. W.
  • Canadian Journal of Chemistry, Vol. 49, Issue 16
  • DOI: 10.1139/v71-447

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Pressure-induced amorphization of noble gas clathrate hydrates
journal, February 2021


Nature of the pressure-induced collapse of an ice clathrate by dielectric spectroscopy
journal, December 2008

  • Andersson, Ove; Johari, G. P.
  • The Journal of Chemical Physics, Vol. 129, Issue 23
  • DOI: 10.1063/1.3039760

Pressure-amorphized cubic structure II clathrate hydrate: crystallization in slow motion
journal, January 2011

  • Bauer, Marion; Többens, Daniel M.; Mayer, Erwin
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 6
  • DOI: 10.1039/C0CP01351J

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

Clathrate and other solid phases in the tetrahydrofuran–water system: thermal conductivity and heat capacity under pressure
journal, April 1982

  • Ross, Russell G.; Andersson, Per
  • Canadian Journal of Chemistry, Vol. 60, Issue 7
  • DOI: 10.1139/v82-132

A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar
journal, December 2001

  • Loerting, Thomas; Salzmann, Christoph; Kohl, Ingrid
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 24
  • DOI: 10.1039/b108676f

Structure of a New Dense Amorphous Ice
journal, October 2002


PEARL: the high pressure neutron powder diffractometer at ISIS
journal, August 2016


Exploring Dynamics and Cage–Guest Interactions in Clathrate Hydrates Using Solid-State NMR
journal, December 2015

  • Sengupta, Suvrajit; Guo, Jin; Janda, Kenneth C.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 50
  • DOI: 10.1021/acs.jpcb.5b08369

Elucidating the guest disorder in structure II argon hydrate – A neutron diffraction isotopic substitution study
journal, May 2020

  • Brant Carvalho, Paulo H. B.; Mace, Amber; Andersson, Ove
  • Journal of Solid State Chemistry, Vol. 285
  • DOI: 10.1016/j.jssc.2020.121220

Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate
journal, May 2019

  • Brant Carvalho, Paulo H. B.; Mace, Amber; Bull, Craig L.
  • The Journal of Chemical Physics, Vol. 150, Issue 20
  • DOI: 10.1063/1.5083958

Insights into hydrogen bonding via ice interfaces and isolated water
journal, November 2014

  • Shultz, Mary Jane; Bisson, Patrick; Vu, Tuan Hoang
  • The Journal of Chemical Physics, Vol. 141, Issue 18
  • DOI: 10.1063/1.4896603

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions
journal, August 1933

  • Bernal, J. D.; Fowler, R. H.
  • The Journal of Chemical Physics, Vol. 1, Issue 8
  • DOI: 10.1063/1.1749327

P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation
journal, December 2007

  • Hess, Berk
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 1
  • DOI: 10.1021/ct700200b

Pressure‐induced phase transitions in clathrate hydrates
journal, January 1991

  • Handa, Y. P.; Tse, J. S.; Klug, D. D.
  • The Journal of Chemical Physics, Vol. 94, Issue 1
  • DOI: 10.1063/1.460329

“Liquid-like” Water in Clathrates Induced by Host–Guest Hydrogen Bonding
journal, July 2021

  • Nguyen, Ngoc N.; Berger, Rüdiger; Wagner, Manfred
  • The Journal of Physical Chemistry C, Vol. 125, Issue 28
  • DOI: 10.1021/acs.jpcc.1c05531

Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Structure and stability of an amorphous water–methane mixture produced by cold compression of methane hydrate
journal, August 2012


Evidence for phase separation during the crystallization of hyperquenched glassy clathrate hydrate forming solutions
journal, April 1999

  • Tulk, C. A.; Ba, Y.; Klug, D. D.
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478550

Molecular Dynamics Study on the Equilibrium and Kinetic Properties of Tetrahydrofuran Clathrate Hydrates
journal, January 2015

  • Wu, Jyun-Yi; Chen, Li-Jen; Chen, Yan-Ping
  • The Journal of Physical Chemistry C, Vol. 119, Issue 3
  • DOI: 10.1021/jp5096536

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


Annealed high-density amorphous ice under pressure
journal, May 2006

  • Nelmes, Richard J.; Loveday, John S.; Strässle, Thierry
  • Nature Physics, Vol. 2, Issue 6
  • DOI: 10.1038/nphys313

Structural investigation of three distinct amorphous forms of Ar hydrate
journal, January 2021

  • Brant Carvalho, Paulo H. B.; Moraes, Pedro Ivo R.; Leitão, Alexandre A.
  • RSC Advances, Vol. 11, Issue 49
  • DOI: 10.1039/D1RA05697B

Transitions in Pressure Collapsed Clathrate Hydrates
journal, February 2015

  • Andersson, Ove; Nakazawa, Yasuhiro
  • The Journal of Physical Chemistry B, Vol. 119, Issue 9
  • DOI: 10.1021/jp511442r

Collapse of an ice clathrate under pressure observed via thermal conductivity measurements
journal, November 2008


MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations
journal, December 2016

  • Goret, G.; Aoun, B.; Pellegrini, E.
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 1
  • DOI: 10.1021/acs.jcim.6b00571

A theory of the electrical properties of liquid metals: III. the resistivity of binary alloys
journal, January 1965


GenIce: Hydrogen-Disordered Ice Generator
journal, October 2017

  • Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki
  • Journal of Computational Chemistry, Vol. 39, Issue 1
  • DOI: 10.1002/jcc.25077

A smooth particle mesh Ewald method
journal, November 1995

  • Essmann, Ulrich; Perera, Lalith; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 103, Issue 19
  • DOI: 10.1063/1.470117

Long-Time Correlations and Hydrophobe-Modified Hydrogen-Bonding Dynamics in Hydrophobic Hydration
journal, May 2012

  • Titantah, John Tatini; Karttunen, Mikko
  • Journal of the American Chemical Society, Vol. 134, Issue 22
  • DOI: 10.1021/ja301908a

Linking microscopic guest properties to macroscopic observables in clathrate hydrates: Guest-host hydrogen bonding
journal, May 2009

  • Alavi, Saman; Susilo, Robin; Ripmeester, John A.
  • The Journal of Chemical Physics, Vol. 130, Issue 17
  • DOI: 10.1063/1.3124187

Hydrogen Clathrates: Next Generation Hydrogen Storage Materials
journal, October 2021


A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates
journal, March 2018

  • Andersson, Ove; Häussermann, Ulrich
  • The Journal of Physical Chemistry B, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcb.8b01269

VMD: Visual molecular dynamics
journal, February 1996


Vibrational dynamics of amorphous ice
journal, February 1999


Hydrogen Clusters in Clathrate Hydrate
journal, September 2002


A flexible algorithm for calculating pair interactions on SIMD architectures
journal, December 2013