DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sodium Rich Vanadium Oxy‐Fluorophosphate – Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O – as Advanced Cathode for Sodium Ion Batteries

Abstract

Abstract Conventional sodium‐based layered oxide cathodes are extremely air sensitive and possess poor electrochemical performance along with safety concerns when operating at high voltage. The polyanion phosphate, Na 3 V 2 (PO 4 ) 3 stands out as an excellent candidate due to its high nominal voltage, ambient air stability, and long cycle life. The caveat is that Na 3 V 2 (PO 4 ) 3 can only exhibit reversible capacities in the range of 100 mAh g −1 , 20% below its theoretical capacity. Here, the synthesis and characterizations are reported for the first time of the sodium‐rich vanadium oxyfluorophosphate, Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O, a tailored derivative compound of Na 3 V 2 (PO 4 ) 3 , with extensive electrochemical and structural analyses. Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O delivers an initial reversible capacity of 117 mAh g −1 between 2.5 and 4.5 V under the 1C rate at room temperature, with 85% capacity retention after 900 cycles. The cycling stability is further improved when the material is cycled at 50 °C within 2.8–4.3 V for 100 cycles. When paired with a presodiated hard carbon,more » Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O cycled with a capacity retention of 85% after 500 cycles. Cosubstitution of the transition metal and fluorine in Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O as well as the sodium‐rich structure are the major factors behind the improvement of specific capacity and cycling stability, which paves the way for this cathode in sodium‐ion batteries.« less

Authors:
 [1];  [2];  [1];  [1];  [3];  [4];  [1];  [1];  [5];  [6];  [1]; ORCiD logo [1]
  1. Electrification and Energy Infrastructures Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
  2. Qatar Environment and Energy Research Institute Hamad Bin Khalifa University Qatar Foundation Doha 34110 Qatar
  3. Exponent, Inc. Natick MA 01760 USA
  4. Department of Physics &, Astronomy Hunter College of the City University of New York New York NY 10065 USA
  5. Electrification and Energy Infrastructures Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA, Exponent, Inc. Natick MA 01760 USA, Department of Physics &, Astronomy Hunter College of the City University of New York New York NY 10065 USA, Greenmat Cesam Research Unit University of Liège Department of Chemistry Liège 4000 Belgium, Departamento de Química Inorgánica Facultad de Químicas Universidad Complutense Madrid 28040 Spain
  6. Departamento de Química Inorgánica Facultad de Químicas Universidad Complutense Madrid 28040 Spain
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
OSTI Identifier:
1974479
Alternate Identifier(s):
OSTI ID: 1975348; OSTI ID: 1983413
Grant/Contract Number:  
DE‐AC05‐00OR22725; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science Journal Volume: 10 Journal Issue: 22; Journal ID: ISSN 2198-3844
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; energy storage; high-voltage cathode; in situ X-ray; sodium-ion battery; vanadium Oxy-fluorophosphate

Citation Formats

Essehli, Rachid, Yahia, Hamdi Ben, Amin, Ruhul, Li, Mengya, Morales, Daniel, Greenbaum, Steven G., Abouimrane, Ali, Parejiya, Anand, Mahmoud, Abdelfattah, Boulahya, Khalid, Dixit, Marm, and Belharouak, Ilias. Sodium Rich Vanadium Oxy‐Fluorophosphate – Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O – as Advanced Cathode for Sodium Ion Batteries. Germany: N. p., 2023. Web. doi:10.1002/advs.202301091.
Essehli, Rachid, Yahia, Hamdi Ben, Amin, Ruhul, Li, Mengya, Morales, Daniel, Greenbaum, Steven G., Abouimrane, Ali, Parejiya, Anand, Mahmoud, Abdelfattah, Boulahya, Khalid, Dixit, Marm, & Belharouak, Ilias. Sodium Rich Vanadium Oxy‐Fluorophosphate – Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O – as Advanced Cathode for Sodium Ion Batteries. Germany. https://doi.org/10.1002/advs.202301091
Essehli, Rachid, Yahia, Hamdi Ben, Amin, Ruhul, Li, Mengya, Morales, Daniel, Greenbaum, Steven G., Abouimrane, Ali, Parejiya, Anand, Mahmoud, Abdelfattah, Boulahya, Khalid, Dixit, Marm, and Belharouak, Ilias. Thu . "Sodium Rich Vanadium Oxy‐Fluorophosphate – Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O – as Advanced Cathode for Sodium Ion Batteries". Germany. https://doi.org/10.1002/advs.202301091.
@article{osti_1974479,
title = {Sodium Rich Vanadium Oxy‐Fluorophosphate – Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O – as Advanced Cathode for Sodium Ion Batteries},
author = {Essehli, Rachid and Yahia, Hamdi Ben and Amin, Ruhul and Li, Mengya and Morales, Daniel and Greenbaum, Steven G. and Abouimrane, Ali and Parejiya, Anand and Mahmoud, Abdelfattah and Boulahya, Khalid and Dixit, Marm and Belharouak, Ilias},
abstractNote = {Abstract Conventional sodium‐based layered oxide cathodes are extremely air sensitive and possess poor electrochemical performance along with safety concerns when operating at high voltage. The polyanion phosphate, Na 3 V 2 (PO 4 ) 3 stands out as an excellent candidate due to its high nominal voltage, ambient air stability, and long cycle life. The caveat is that Na 3 V 2 (PO 4 ) 3 can only exhibit reversible capacities in the range of 100 mAh g −1 , 20% below its theoretical capacity. Here, the synthesis and characterizations are reported for the first time of the sodium‐rich vanadium oxyfluorophosphate, Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O, a tailored derivative compound of Na 3 V 2 (PO 4 ) 3 , with extensive electrochemical and structural analyses. Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O delivers an initial reversible capacity of 117 mAh g −1 between 2.5 and 4.5 V under the 1C rate at room temperature, with 85% capacity retention after 900 cycles. The cycling stability is further improved when the material is cycled at 50 °C within 2.8–4.3 V for 100 cycles. When paired with a presodiated hard carbon, Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O cycled with a capacity retention of 85% after 500 cycles. Cosubstitution of the transition metal and fluorine in Na 3.2 Ni 0.2 V 1.8 (PO 4 ) 2 F 2 O as well as the sodium‐rich structure are the major factors behind the improvement of specific capacity and cycling stability, which paves the way for this cathode in sodium‐ion batteries.},
doi = {10.1002/advs.202301091},
journal = {Advanced Science},
number = 22,
volume = 10,
place = {Germany},
year = {Thu May 18 00:00:00 EDT 2023},
month = {Thu May 18 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/advs.202301091

Save / Share:

Works referenced in this record:

Synthesis of uniform hierarchical Na 3 V 1.95 Mn 0.05 (PO 4 ) 2 F 3 @C hollow microspheres as a cathode material for sodium-ion batteries
journal, January 2018

  • Zhang, Yu; Guo, Shirui; Xu, Huayun
  • Journal of Materials Chemistry A, Vol. 6, Issue 10
  • DOI: 10.1039/C7TA11105C

Correlation of Oxygen Anion Redox Activity to In‐Plane Honeycomb Cation Ordering in Na x Ni y Mn 1− y O 2 Cathodes
journal, May 2022

  • Li, Mengya; Jafta, Charl J.; Geng, Linxiao
  • Advanced Energy and Sustainability Research, Vol. 3, Issue 7
  • DOI: 10.1002/aesr.202200027

Na 4-α M 2+α/2 (P 2 O 7 ) 2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe 0.5 Mn 0.5 , Mn): A Promising Sodium Ion Cathode for Na-ion Batteries
journal, February 2013

  • Ha, Kwang-Ho; Woo, Seung Hee; Mok, Duckgyun
  • Advanced Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1002/aenm.201200825

Strong Impact of the Oxygen Content in Na 3 V 2 (PO 4 ) 2 F 3– y O y (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties
journal, October 2016


Lithium Iron Aluminum Nickelate, LiNi x Fe y Al z O 2 —New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries
journal, July 2020

  • Muralidharan, Nitin; Essehli, Rachid; Hermann, Raphael P.
  • Advanced Materials, Vol. 32, Issue 34
  • DOI: 10.1002/adma.202002960

Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries
journal, February 2019


Temperature‐dependent Battery Performance of a Na 3 V 2 (PO 4 ) 2 F 3 @MWCNT Cathode and In‐situ Heat Generation on Cycling
journal, August 2020


Facile design and synthesis of Co-free layered O3-type NaNi0.2Mn0.2Fe0.6O2 as promising cathode material for sodium-ion batteries
journal, June 2022


Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials
journal, December 2018


1D Nanostructured Na 7 V 4 (P 2 O 7 ) 4 (PO 4 ) as High-Potential and Superior-Performance Cathode Material for Sodium-Ion Batteries
journal, June 2014

  • Deng, Chao; Zhang, Sen
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am501072j

Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2 Cathode Material for Sodium Ion Batteries
journal, April 2022


Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2−xVx(PO4)(SO4)2
journal, September 2020


First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery
journal, July 2016


4.7 V Operation of the Cr4+/Cr3+ Redox Couple in Na3Cr2(PO4)2F3
journal, February 2021


Microwave-assisted hydrothermal synthesis, structure and electrochemical properties of the Na3V2-yFeyО2x(PO4)2F3-2x electrode materials for Na-ion batteries
journal, January 2020

  • Shakhova, Iaroslava; Rozova, Marina G.; Burova, Daria
  • Journal of Solid State Chemistry, Vol. 281
  • DOI: 10.1016/j.jssc.2019.121010

Selective sodium-ion diffusion channels in Na2-xFe3(PO4)3 positive electrode for Na-ion batteries
journal, January 2020


Synthesis, structural, and electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries
journal, January 2016

  • Lin, Xinghao; Dong, Youzhong; Kuang, Quan
  • Journal of Solid State Electrochemistry, Vol. 20, Issue 5
  • DOI: 10.1007/s10008-015-3114-2

Electrochemical investigations of high-voltage Na4Ni3(PO4)2P2O7 cathode for sodium-ion batteries
journal, November 2019

  • Kumar, P. Ramesh; Yahia, H. B.; Belharouak, I.
  • Journal of Solid State Electrochemistry, Vol. 24, Issue 1
  • DOI: 10.1007/s10008-019-04448-6

Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na 3 V 2 (PO 4 ) 2 F 3
journal, April 2014

  • Liu, Zigeng; Hu, Yan-Yan; Dunstan, Matthew T.
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm403728w

Properties of the “Z”‐Phase in Mn‐Rich P2‐Na 0.67 Ni 0.1 Mn 0.8 Fe 0.1 O 2 as Sodium‐Ion‐Battery Cathodes
journal, February 2023


Alluaudite Na 2 Co 2 Fe(PO 4 ) 3 as an electroactive material for sodium ion batteries
journal, January 2015

  • Essehli, R.; Belharouak, I.; Ben Yahia, H.
  • Dalton Transactions, Vol. 44, Issue 17
  • DOI: 10.1039/C5DT00971E

Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution
journal, July 2019


LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries
journal, September 2020


Understanding the Origin of the Ultrahigh Rate Performance of a SiO 2 -Modified LiNi 0.5 Mn 1.5 O 4 Cathode for Lithium-Ion Batteries
journal, September 2019

  • Nisar, Umair; Al-Hail, Sara Ahmad J. A.; Petla, Ramesh Kumar
  • ACS Applied Energy Materials, Vol. 2, Issue 10
  • DOI: 10.1021/acsaem.9b01211

Unveiling the sodium intercalation properties in Na1.86□0.14Fe3(PO4)3
journal, August 2016


Interrelation between inhomogeneity and cyclability in O3-NaFe1/2 Co1/2 O2
journal, November 2016

  • Amaha, Kaoru; Kobayashi, Wataru; Akama, Shota
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 11, Issue 1
  • DOI: 10.1002/pssr.201600284

Obtaining P2-Na 0.56 [Ni 0.1 Co 0.1 Mn 0.8 ]O 2 Cathode Materials for Sodium-Ion Batteries by using a Co-precipitation Method
journal, August 2018


Understanding the Na-Ion Storage Mechanism in Na3+xV2–xMx(PO4)3 (M = Ni2+, Co2+, Mg2+; x = 0.1–0.5) Cathodes
journal, August 2020

  • Bag, Sourav; Murarka, Hardik; Zhou, Chengtian
  • ACS Applied Energy Materials, Vol. 3, Issue 9
  • DOI: 10.1021/acsaem.0c01118

Effect of Composition on Mechanical Properties and Conductivity of the Dual-Ion Conductor Na1+xMnx/2Zr2–x/2(PO4)3 for Solid-State Batteries
journal, October 2021

  • Kalnaus, Sergiy; Amin, Ruhul; Parish, Chad
  • ACS Applied Energy Materials, Vol. 4, Issue 10
  • DOI: 10.1021/acsaem.1c02414

Na4MnV(PO4)3-rGO as Advanced cathode for aqueous and non-aqueous sodium ion batteries
journal, July 2019


Phase separation and frustrated square lattice magnetism of Na 1.5 VOPO 4 F 0.5
journal, July 2011


Na 1+ x Mn x /2 Zr 2– x /2 (PO 4 ) 3 as a Li + and Na + Super Ion Conductor for Solid-State Batteries
journal, January 2021


Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode
journal, April 2017


Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries
journal, February 2014


Nuclear Spin-Echo Fourier-Transform Mapping Spectroscopy for Broad NMR Lines in Solids
journal, March 1996


α-Na 2 Ni 2 Fe(PO 4 ) 3 : a dual positive/negative electrode material for sodium ion batteries
journal, January 2015

  • Essehli, R.; Belharouak, I.; Ben Yahia, H.
  • Dalton Transactions, Vol. 44, Issue 10
  • DOI: 10.1039/C5DT00021A

Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Performance of Fe 1.19 (PO 4 )(OH) 0.57 (H 2 O) 0.43 Cathode Material for Li-Ion Batteries
journal, September 2018

  • Mahmoud, Abdelfattah; Karegeya, Claude; Sougrati, Moulay Tahar
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 40
  • DOI: 10.1021/acsami.8b10663

Na 3 V 2 (PO 4 ) 2 F 3 Revisited: A High-Resolution Diffraction Study
journal, June 2014

  • Bianchini, M.; Brisset, N.; Fauth, F.
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm501644g

Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies
journal, December 1999

  • Le Meins, J. -M.; Crosnier-Lopez, M. -P.; Hemon-Ribaud, A.
  • Journal of Solid State Chemistry, Vol. 148, Issue 2
  • DOI: 10.1006/jssc.1999.8447

Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2
journal, April 2018


Superior Electrochemical Performance and Storage Mechanism of Na 3 V 2 (PO 4 ) 3 Cathode for Room-Temperature Sodium-Ion Batteries
journal, October 2012


Na-Rich Na 3+ x V 2– x Ni x (PO 4 ) 3 /C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances
journal, October 2016

  • Li, Hui; Bai, Ying; Wu, Feng
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b09898

Next‐Generation Cobalt‐Free Cathodes – A Prospective Solution to the Battery Industry's Cobalt Problem
journal, January 2022

  • Muralidharan, Nitin; Self, Ethan C.; Dixit, Marm
  • Advanced Energy Materials, Vol. 12, Issue 9
  • DOI: 10.1002/aenm.202103050

Synthesis and electrochemical properties of Co-free P2/O3 biphasic Na1-xLixNi0.33Mn0.67O2 cathode material for sodium-ion batteries
journal, July 2022


Monitoring the Crystal Structure and the Electrochemical Properties of Na3(VO)2(PO4)2F through Fe3+ Substitution
journal, September 2019

  • Nguyen, Long H. B.; Olchowka, Jacob; Belin, Stéphanie
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 42
  • DOI: 10.1021/acsami.9b14249

Hydrothermal synthesis, structural and physico-chemical characterizations of two Nasicon phosphates: M0.50IITi2(PO4)3 (M=Mn, Co)
journal, July 2009


Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries
journal, May 2017

  • Bianchini, Matteo; Xiao, Penghao; Wang, Yan
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700514

Electrochemical studies of a high voltage Na 4 Co 3 (PO 4 ) 2 P 2 O 7 –MWCNT composite through a selected stable electrolyte
journal, January 2020

  • Kumar, P. Ramesh; Essehli, R.; Yahia, H. B.
  • RSC Advances, Vol. 10, Issue 27
  • DOI: 10.1039/D0RA02349C

Crystallographic Computing System JANA2006: General features
journal, January 2014

  • Petříček, Václav; Dušek, Michal; Palatinus, Lukáš
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2014-1737

Insertion compounds and composites made by ball milling for advanced sodium-ion batteries
journal, January 2016

  • Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10308