DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl 3 Heterostructures

Abstract

The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ~0.6 eV can be achieved with widths of ~3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3];  [1];  [1];  [4];  [5];  [6]; ORCiD logo [6];  [7]; ORCiD logo [8];  [9];  [1]; ORCiD logo [10];  [1]
  1. Department of Physics, Columbia University, New York, New York 10027, United States
  2. Department of Physics, Columbia University, New York, New York 10027, United States, Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
  3. Theory Department, Max Planck Institute for Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
  4. Department of Physics, Columbia University, New York, New York 10027, United States, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
  5. Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
  6. Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
  7. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
  8. Theory Department, Max Planck Institute for Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany, Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States, Nano-Bio Spectroscopy Group, Universidad del País Vasco UPV/EHU, San Sebastián 20018, Spain
  9. Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
  10. Department of Physics, Columbia University, New York, New York 10027, United States, Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
Publication Date:
Research Org.:
Columbia Univ., New York, NY (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1971693
Alternate Identifier(s):
OSTI ID: 1854100; OSTI ID: 1855647
Grant/Contract Number:  
SC0019443; SC0018426; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Nano Letters
Additional Journal Information:
Journal Name: Nano Letters Journal Volume: 22 Journal Issue: 5; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; scanning tunneling microscopy; scanning tunneling spectroscopy; scanning near-field optical microscopy; plasmons; two-dimensional materials; charge transfer

Citation Formats

Rizzo, Daniel J., Shabani, Sara, Jessen, Bjarke S., Zhang, Jin, McLeod, Alexander S., Rubio-Verdú, Carmen, Ruta, Francesco L., Cothrine, Matthew, Yan, Jiaqiang, Mandrus, David G., Nagler, Stephen E., Rubio, Angel, Hone, James C., Dean, Cory R., Pasupathy, Abhay N., and Basov, D. N. Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl 3 Heterostructures. United States: N. p., 2022. Web. doi:10.1021/acs.nanolett.1c04579.
Rizzo, Daniel J., Shabani, Sara, Jessen, Bjarke S., Zhang, Jin, McLeod, Alexander S., Rubio-Verdú, Carmen, Ruta, Francesco L., Cothrine, Matthew, Yan, Jiaqiang, Mandrus, David G., Nagler, Stephen E., Rubio, Angel, Hone, James C., Dean, Cory R., Pasupathy, Abhay N., & Basov, D. N. Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl 3 Heterostructures. United States. https://doi.org/10.1021/acs.nanolett.1c04579
Rizzo, Daniel J., Shabani, Sara, Jessen, Bjarke S., Zhang, Jin, McLeod, Alexander S., Rubio-Verdú, Carmen, Ruta, Francesco L., Cothrine, Matthew, Yan, Jiaqiang, Mandrus, David G., Nagler, Stephen E., Rubio, Angel, Hone, James C., Dean, Cory R., Pasupathy, Abhay N., and Basov, D. N. Mon . "Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl 3 Heterostructures". United States. https://doi.org/10.1021/acs.nanolett.1c04579.
@article{osti_1971693,
title = {Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl 3 Heterostructures},
author = {Rizzo, Daniel J. and Shabani, Sara and Jessen, Bjarke S. and Zhang, Jin and McLeod, Alexander S. and Rubio-Verdú, Carmen and Ruta, Francesco L. and Cothrine, Matthew and Yan, Jiaqiang and Mandrus, David G. and Nagler, Stephen E. and Rubio, Angel and Hone, James C. and Dean, Cory R. and Pasupathy, Abhay N. and Basov, D. N.},
abstractNote = {The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ~0.6 eV can be achieved with widths of ~3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials.},
doi = {10.1021/acs.nanolett.1c04579},
journal = {Nano Letters},
number = 5,
volume = 22,
place = {United States},
year = {Mon Feb 28 00:00:00 EST 2022},
month = {Mon Feb 28 00:00:00 EST 2022}
}

Works referenced in this record:

Atomic-Scale Characterization of Graphene p–n Junctions for Electron-Optical Applications
journal, January 2019


Interaction-driven quantum Hall wedding cake–like structures in graphene quantum dots
journal, August 2018

  • Gutiérrez, Christopher; Walkup, Daniel; Ghahari, Fereshte
  • Science, Vol. 361, Issue 6404
  • DOI: 10.1126/science.aar2014

Spin-Split Band Hybridization in Graphene Proximitized with α-RuCl 3 Nanosheets
journal, June 2019


Specular Andreev Reflection in Graphene
journal, August 2006


Imaging electrostatically confined Dirac fermions in graphene quantum dots
journal, June 2016

  • Lee, Juwon; Wong, Dillon; Velasco Jr, Jairo
  • Nature Physics, Vol. 12, Issue 11
  • DOI: 10.1038/nphys3805

Ab Initio Mismatched Interface Theory of Graphene on α RuCl 3 : Doping and Magnetism
journal, March 2020


Confined states and direction-dependent transmission in graphene quantum wells
journal, July 2006


Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots
journal, June 2016

  • Gutiérrez, Christopher; Brown, Lola; Kim, Cheol-Joo
  • Nature Physics, Vol. 12, Issue 11
  • DOI: 10.1038/nphys3806

Evidence for charge transfer and proximate magnetism in graphene– α RuCl 3 heterostructures
journal, October 2019


Photonic crystal for graphene plasmons
journal, October 2019


Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor
journal, November 2020


Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles
journal, July 2010


Nonlinear screening of charges induced in graphene by metal contacts
journal, September 2010


Quantitative study of electronic whispering gallery modes in electrostatic-potential induced circular graphene junctions
journal, March 2020


Topological surface states protected from backscattering by chiral spin texture
journal, August 2009

  • Roushan, Pedram; Seo, Jungpil; Parker, Colin V.
  • Nature, Vol. 460, Issue 7259, p. 1106-1109
  • DOI: 10.1038/nature08308

Visualization and Control of Single-Electron Charging in Bilayer Graphene Quantum Dots
journal, July 2018


Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties
journal, July 2015


The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions
journal, March 2007


Adsorption of alkali adatoms on graphene supported by the Au/Ni(111) surface
journal, August 2015


Role of contacts in graphene transistors: A scanning photocurrent study
journal, June 2009


Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl 3 Interfaces
journal, November 2020


Creating and probing electron whispering-gallery modes in graphene
journal, May 2015


Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors
journal, December 2018


Imaging standing waves in a two-dimensional electron gas
journal, June 1993

  • Crommie, M. F.; Lutz, C. P.; Eigler, D. M.
  • Nature, Vol. 363, Issue 6429
  • DOI: 10.1038/363524a0

Electronic transport in locally gated graphene nanoconstrictions
journal, November 2007

  • Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri
  • Applied Physics Letters, Vol. 91, Issue 19
  • DOI: 10.1063/1.2803074

Electronic Properties of α RuCl 3 in Proximity to Graphene
journal, December 2019


Reentrance effect in a graphene n p n junction coupled to a superconductor
journal, June 2007


Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene
journal, July 2008

  • Zhang, Yuanbo; Brar, Victor W.; Wang, Feng
  • Nature Physics, Vol. 4, Issue 8
  • DOI: 10.1038/nphys1022

Observation of negative refraction of Dirac fermions in graphene
journal, September 2015

  • Lee, Gil-Ho; Park, Geon-Hyoung; Lee, Hu-Jong
  • Nature Physics, Vol. 11, Issue 11
  • DOI: 10.1038/nphys3460