DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size‐Induced Ferroelectricity in Antiferroelectric Oxide Membranes

Abstract

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [4];  [4];  [5];  [6];  [7];  [8];  [9];  [9];  [10];  [11];  [12];  [13];  [13];  [10];  [14];  [15] more »;  [16];  [17];  [4];  [9] « less
  1. Department of Applied Physics Stanford University Stanford CA 94305 USA, Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA 94025 USA, Department of Materials Science and Engineering North Carolina State University Raleigh NC 27606 USA
  2. Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA 94025 USA, Department of Physics Stanford University Stanford CA 94305 USA
  3. CEMES Université de Toulouse CNRS UPS, 29 rue Jeanne Marvig F‐31055 Toulouse France
  4. Physics Department and Institute for Nanoscience and Engineering University of Arkansas Fayetteville AR 72701 USA
  5. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA
  6. Department of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA, Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los Angeles CA 90089 USA
  7. Department of Materials Science and Engineering University of California Berkeley Berkeley CA 94720 USA
  8. Department of Materials Science and Engineering University of California Berkeley Berkeley CA 94720 USA, School of Engineering Brown University Providence RI 02912 USA
  9. Department of Applied Physics Stanford University Stanford CA 94305 USA, Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
  10. Department of Materials Science and Engineering University of California Berkeley Berkeley CA 94720 USA, Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
  11. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
  12. Department of Materials Science and Engineering North Carolina State University Raleigh NC 27606 USA
  13. The Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
  14. Department of Mechanical Engineering Stanford University Stanford CA 94305 USA
  15. X‐ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
  16. Department of Materials Science and Nanoengineering Department of Physics and Astronomy Rice University Houston TX 77251 USA
  17. Department of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE); National Science Foundation (NSF); US Army Research Office (ARO); USDOD; US Department of the Navy, Office of Naval Research (ONR); US Air Force Office of Scientific Research (AFOSR); North Carolina State University; University of California System; USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); Vannevar Bush Faculty Fellowship (VBFF); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1962461
Alternate Identifier(s):
OSTI ID: 1962463; OSTI ID: 1988274; OSTI ID: 2000755; OSTI ID: 2228946; OSTI ID: 2305345
Grant/Contract Number:  
DE‐AC02‐76SF00515; DE‐AC02‐05CH11231; DE‐AC02‐05‐CH11231; DE‐SC0021075; DE‐AC02‐06CH11357; AC02-06CH11357; AC02-76SF00515; AC02-05CH11231; SC0021075; ECCS-1542152; W911NF-21-2-0162; N00014-20-1-2834; N00014-21-1-2086; FA9550-18-1-0480; W911NF-21-1-0118; DGE-1656518
Resource Type:
Published Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 35 Journal Issue: 17; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE; antiferroelectric materials; membranes; phase transition; size effects; sodium niobate; membrane; antiferroelectric

Citation Formats

Xu, Ruijuan, Crust, Kevin J., Harbola, Varun, Arras, Rémi, Patel, Kinnary Y., Prosandeev, Sergey, Cao, Hui, Shao, Yu‐Tsun, Behera, Piush, Caretta, Lucas, Kim, Woo Jin, Khandelwal, Aarushi, Acharya, Megha, Wang, Melody M., Liu, Yin, Barnard, Edward S., Raja, Archana, Martin, Lane W., Gu, X. Wendy, Zhou, Hua, Ramesh, Ramamoorthy, Muller, David A., Bellaiche, Laurent, and Hwang, Harold Y. Size‐Induced Ferroelectricity in Antiferroelectric Oxide Membranes. Germany: N. p., 2023. Web. doi:10.1002/adma.202210562.
Xu, Ruijuan, Crust, Kevin J., Harbola, Varun, Arras, Rémi, Patel, Kinnary Y., Prosandeev, Sergey, Cao, Hui, Shao, Yu‐Tsun, Behera, Piush, Caretta, Lucas, Kim, Woo Jin, Khandelwal, Aarushi, Acharya, Megha, Wang, Melody M., Liu, Yin, Barnard, Edward S., Raja, Archana, Martin, Lane W., Gu, X. Wendy, Zhou, Hua, Ramesh, Ramamoorthy, Muller, David A., Bellaiche, Laurent, & Hwang, Harold Y. Size‐Induced Ferroelectricity in Antiferroelectric Oxide Membranes. Germany. https://doi.org/10.1002/adma.202210562
Xu, Ruijuan, Crust, Kevin J., Harbola, Varun, Arras, Rémi, Patel, Kinnary Y., Prosandeev, Sergey, Cao, Hui, Shao, Yu‐Tsun, Behera, Piush, Caretta, Lucas, Kim, Woo Jin, Khandelwal, Aarushi, Acharya, Megha, Wang, Melody M., Liu, Yin, Barnard, Edward S., Raja, Archana, Martin, Lane W., Gu, X. Wendy, Zhou, Hua, Ramesh, Ramamoorthy, Muller, David A., Bellaiche, Laurent, and Hwang, Harold Y. Sun . "Size‐Induced Ferroelectricity in Antiferroelectric Oxide Membranes". Germany. https://doi.org/10.1002/adma.202210562.
@article{osti_1962461,
title = {Size‐Induced Ferroelectricity in Antiferroelectric Oxide Membranes},
author = {Xu, Ruijuan and Crust, Kevin J. and Harbola, Varun and Arras, Rémi and Patel, Kinnary Y. and Prosandeev, Sergey and Cao, Hui and Shao, Yu‐Tsun and Behera, Piush and Caretta, Lucas and Kim, Woo Jin and Khandelwal, Aarushi and Acharya, Megha and Wang, Melody M. and Liu, Yin and Barnard, Edward S. and Raja, Archana and Martin, Lane W. and Gu, X. Wendy and Zhou, Hua and Ramesh, Ramamoorthy and Muller, David A. and Bellaiche, Laurent and Hwang, Harold Y.},
abstractNote = {Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.},
doi = {10.1002/adma.202210562},
journal = {Advanced Materials},
number = 17,
volume = 35,
place = {Germany},
year = {Sun Mar 19 00:00:00 EDT 2023},
month = {Sun Mar 19 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.202210562

Save / Share:

Works referenced in this record:

Freestanding crystalline oxide perovskites down to the monolayer limit
journal, June 2019


Processing Effects for Integrated PZT: Residual Stress, Thickness, and Dielectric Properties
journal, October 2005


Polymorphism in Micro-, Submicro-, and Nanocrystalline NaNbO 3
journal, October 2005

  • Shiratori, Yosuke; Magrez, Arnaud; Dornseiffer, Jürgen
  • The Journal of Physical Chemistry B, Vol. 109, Issue 43
  • DOI: 10.1021/jp052974p

Strain Engineering of Ferroelectric Domains in KxNa1−xNbO3 Epitaxial Layers
journal, August 2017


Interface Control of Ferroelectricity in an SrRuO 3 /BaTiO 3 /SrRuO 3 Capacitor and its Critical Thickness
journal, March 2017

  • Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung-Jin
  • Advanced Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adma.201602795

Probing of structural phase transitions in barium titanate modified sodium niobate using Raman scattering
journal, May 2019

  • Jauhari, Mrinal; Mishra, S. K.; Mittal, R.
  • Journal of Raman Spectroscopy, Vol. 50, Issue 8
  • DOI: 10.1002/jrs.5618

Projector augmented-wave method
journal, December 1994


Strain-induced room-temperature ferroelectricity in SrTiO3 membranes
journal, June 2020


Finite-size effects in antiferroelectric nanoparticles
journal, September 1997

  • Chattopadhyay, Soma; Ayyub, Pushan; Palkar, V. R.
  • Journal of Physics: Condensed Matter, Vol. 9, Issue 38
  • DOI: 10.1088/0953-8984/9/38/017

Metastable Ferroelectric Sodium Niobate
journal, February 1964


Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers
journal, September 2016

  • Lu, Di; Baek, David J.; Hong, Seung Sae
  • Nature Materials, Vol. 15, Issue 12
  • DOI: 10.1038/nmat4749

Strain Gradient Elasticity in SrTiO 3 Membranes: Bending versus Stretching
journal, March 2021


Grain-size dependence of mechanical properties in polycrystalline boron-nitride: a computational study
journal, January 2015

  • Becton, Matthew; Wang, Xianqiao
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 34
  • DOI: 10.1039/C5CP03460D

Simple ways of determining perovskite structures
journal, November 1975


Reducing Coercive-Field Scaling in Ferroelectric Thin Films via Orientation Control
journal, April 2018


Properties of (001) NaNbO3 films under epitaxial strain: A first-principles study
journal, March 2021


Depolarization corrections to the coercive field in thin-film ferroelectrics
journal, June 2003


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline materials
journal, January 2010


Softening of nanocrystalline metals at very small grain sizes
journal, February 1998

  • Schiøtz, Jakob; Di Tolla, Francesco D.; Jacobsen, Karsten W.
  • Nature, Vol. 391, Issue 6667
  • DOI: 10.1038/35328

Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films
journal, May 2000

  • Ghosez, Ph.; Rabe, K. M.
  • Applied Physics Letters, Vol. 76, Issue 19, p. 2767-2769
  • DOI: 10.1063/1.126469

Freestanding Oxide Ferroelectric Tunnel Junction Memories Transferred onto Silicon
journal, April 2019


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Enhanced ferroelectricity in ultrathin films grown directly on silicon
journal, April 2020


The Polar Phase of NaNbO 3 : A Combined Study by Powder Diffraction, Solid-State NMR, and First-Principles Calculations
journal, June 2010

  • Johnston, Karen E.; Tang, Chiu C.; Parker, Julia E.
  • Journal of the American Chemical Society, Vol. 132, Issue 25
  • DOI: 10.1021/ja101860r

Scaling Effects in Perovskite Ferroelectrics: Fundamental Limits and Process-Structure-Property Relations
journal, July 2016

  • Ihlefeld, Jon F.; Harris, David T.; Keech, Ryan
  • Journal of the American Ceramic Society, Vol. 99, Issue 8
  • DOI: 10.1111/jace.14387

Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO 2 -3 wt% Y 2 O 3 ceramic
journal, May 2004


Dimension and Size Effects in Ferroelectrics
journal, August 1997

  • Li, Shaoping; Eastman, Jeffery A.; Vetrone, James M.
  • Japanese Journal of Applied Physics, Vol. 36, Issue Part 1, No. 8
  • DOI: 10.1143/JJAP.36.5169

Antiferroelectrics for Energy Storage Applications: a Review
journal, July 2018

  • Liu, Zhen; Lu, Teng; Ye, Jiaming
  • Advanced Materials Technologies, Vol. 3, Issue 9
  • DOI: 10.1002/admt.201800111

Competing antiferroelectric and ferroelectric interactions in Na Nb O 3 : Neutron diffraction and theoretical studies
journal, July 2007


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Raman scattering investigations of the antiferroelectric-ferroelectric phase transition of NaNbO3
journal, May 1998


Single crystal functional oxides on silicon
journal, February 2016

  • Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10547

Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials
journal, December 2012


Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Low-temperature Raman spectroscopic studies in NaNbO3
journal, March 2011

  • Mishra, K. K.; Sivasubramanian, V.; Arora, A. K.
  • Journal of Raman Spectroscopy, Vol. 42, Issue 3
  • DOI: 10.1002/jrs.2706

Critical Thickness for Antiferroelectricity in PbZrO 3
journal, August 2015


Anisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin films grown on (110) TbScO3
journal, March 2013

  • Duk, A.; Schmidbauer, M.; Schwarzkopf, J.
  • Applied Physics Letters, Vol. 102, Issue 9
  • DOI: 10.1063/1.4794405

Finite size effects in ferroelectric-semiconductor thin films under open-circuit electric boundary conditions
journal, January 2015

  • Eliseev, Eugene A.; Kalinin, Sergei V.; Morozovska, Anna N.
  • Journal of Applied Physics, Vol. 117, Issue 3
  • DOI: 10.1063/1.4906139

Critical thickness for ferroelectricity in perovskite ultrathin films
journal, April 2003

  • Junquera, Javier; Ghosez, Philippe
  • Nature, Vol. 422, Issue 6931, p. 506-509
  • DOI: 10.1038/nature01501

Ferroelectric domain structure of anisotropically strained NaNbO3 epitaxial thin films
journal, May 2014

  • Schwarzkopf, J.; Braun, D.; Schmidbauer, M.
  • Journal of Applied Physics, Vol. 115, Issue 20
  • DOI: 10.1063/1.4876906

Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications
journal, May 2021

  • Randall, Clive A.; Fan, Zhongming; Reaney, Ian
  • Journal of the American Ceramic Society, Vol. 104, Issue 8
  • DOI: 10.1111/jace.17834

Beyond Substrates: Strain Engineering of Ferroelectric Membranes
journal, September 2020

  • Pesquera, David; Parsonnet, Eric; Qualls, Alexander
  • Advanced Materials, Vol. 32, Issue 43
  • DOI: 10.1002/adma.202003780

Extreme tensile strain states in La 0.7 Ca 0.3 MnO 3 membranes
journal, April 2020


Understanding and revisiting the most complex perovskite system via atomistic simulations
journal, May 2018


Electric field induced domain rearrangement in potassium niobate thin films studied byin situsecond harmonic generation measurements
journal, January 1997

  • Gopalan, Venkatraman; Raj, Rishi
  • Journal of Applied Physics, Vol. 81, Issue 2
  • DOI: 10.1063/1.364222