DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase

Abstract

β-Lactam antibiotics are the most important and widely used antibacterial agents across the world. However, the widespread dissemination of β-lactamases among pathogenic bacteria limits the efficacy of β-lactam antibiotics. This has created a major public health crisis. The use of β-lactamase inhibitors has proven useful in restoring the activity of β-lactam antibiotics, yet, effective clinically approved inhibitors against class B metallo-β-lactamases are not available. L1, a class B3 enzyme expressed by Stenotrophomonas maltophilia, is a significant contributor to the β-lactam resistance displayed by this opportunistic pathogen. Structurally, L1 is a tetramer with two elongated loops, α3-β7 and β12-α5, present around the active site of each monomer. Residues in these two loops influence substrate/inhibitor binding. To study how the conformational changes of the elongated loops affect the active site in each monomer, enhanced sampling molecular dynamics simulations were performed, Markov State Models were built, and convolutional variational autoencoder-based deep learning was applied. The key identified residues (D150a, H151, P225, Y227, and R236) were mutated and the activity of the generated L1 variants was evaluated in cell-based experiments. The results demonstrate that there are extremely significant gating interactions between α3-β7 and β12-α5 loops. Taken together, the gating interactions with the conformational changesmore » of the key residues play an important role in the structural remodeling of the active site. These observations offer insights into the potential for novel drug development exploiting these gating interactions.« less

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [4]; ORCiD logo [5];  [2]; ORCiD logo [1]
  1. University College London (United Kingdom)
  2. Case Western Reserve University, Cleveland, OH (United States); Department of Veterans Affairs, Cleveland, OH (United States)
  3. Georgia Institute of Technology, Atlanta, GA (United States)
  4. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  5. Case Western Reserve University, Cleveland, OH (United States); Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario (Argentina); Universidad Nacional de Rosario (Argentina)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); National Institutes of Health (NIH); Department of Veterans Affairs; USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1959610
Grant/Contract Number:  
AC05-00OR22725; R01AI100560; BX005307; RO1AI063517
Resource Type:
Accepted Manuscript
Journal Name:
eLife
Additional Journal Information:
Journal Volume: 12; Journal Issue: n/a; Journal ID: ISSN 2050-084X
Publisher:
eLife Sciences Publications, Ltd.
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Zhao, Zhuoran, Shen, Xiayu, Chen, Shuang, Gu, Jing, Wang, Haun, Mojica, Maria F., Samanta, Moumita, Bhowmik, Debsindhu, Vila, Alejandro J., Bonomo, Robert A., and Haider, Shozeb. Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase. United States: N. p., 2023. Web. doi:10.7554/elife.83928.
Zhao, Zhuoran, Shen, Xiayu, Chen, Shuang, Gu, Jing, Wang, Haun, Mojica, Maria F., Samanta, Moumita, Bhowmik, Debsindhu, Vila, Alejandro J., Bonomo, Robert A., & Haider, Shozeb. Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase. United States. https://doi.org/10.7554/elife.83928
Zhao, Zhuoran, Shen, Xiayu, Chen, Shuang, Gu, Jing, Wang, Haun, Mojica, Maria F., Samanta, Moumita, Bhowmik, Debsindhu, Vila, Alejandro J., Bonomo, Robert A., and Haider, Shozeb. Fri . "Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase". United States. https://doi.org/10.7554/elife.83928. https://www.osti.gov/servlets/purl/1959610.
@article{osti_1959610,
title = {Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase},
author = {Zhao, Zhuoran and Shen, Xiayu and Chen, Shuang and Gu, Jing and Wang, Haun and Mojica, Maria F. and Samanta, Moumita and Bhowmik, Debsindhu and Vila, Alejandro J. and Bonomo, Robert A. and Haider, Shozeb},
abstractNote = {β-Lactam antibiotics are the most important and widely used antibacterial agents across the world. However, the widespread dissemination of β-lactamases among pathogenic bacteria limits the efficacy of β-lactam antibiotics. This has created a major public health crisis. The use of β-lactamase inhibitors has proven useful in restoring the activity of β-lactam antibiotics, yet, effective clinically approved inhibitors against class B metallo-β-lactamases are not available. L1, a class B3 enzyme expressed by Stenotrophomonas maltophilia, is a significant contributor to the β-lactam resistance displayed by this opportunistic pathogen. Structurally, L1 is a tetramer with two elongated loops, α3-β7 and β12-α5, present around the active site of each monomer. Residues in these two loops influence substrate/inhibitor binding. To study how the conformational changes of the elongated loops affect the active site in each monomer, enhanced sampling molecular dynamics simulations were performed, Markov State Models were built, and convolutional variational autoencoder-based deep learning was applied. The key identified residues (D150a, H151, P225, Y227, and R236) were mutated and the activity of the generated L1 variants was evaluated in cell-based experiments. The results demonstrate that there are extremely significant gating interactions between α3-β7 and β12-α5 loops. Taken together, the gating interactions with the conformational changes of the key residues play an important role in the structural remodeling of the active site. These observations offer insights into the potential for novel drug development exploiting these gating interactions.},
doi = {10.7554/elife.83928},
journal = {eLife},
number = n/a,
volume = 12,
place = {United States},
year = {Fri Feb 24 00:00:00 EST 2023},
month = {Fri Feb 24 00:00:00 EST 2023}
}

Works referenced in this record:

Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics
journal, March 2021


The structure of Toho1 β-lactamase in complex with penicillin reveals the role of Tyr105 in substrate recognition
journal, November 2016

  • Langan, Patricia S.; Vandavasi, Venu Gopal; Weiss, Kevin L.
  • FEBS Open Bio, Vol. 6, Issue 12
  • DOI: 10.1002/2211-5463.12132

The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop
journal, January 2019

  • Palacios, Antonela R.; Mojica, María F.; Giannini, Estefanía
  • Antimicrobial Agents and Chemotherapy, Vol. 63, Issue 1
  • DOI: 10.1128/AAC.01754-18

Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases
journal, January 2014

  • Hargis, Jacqueline C.; Vankayala, Sai Lakshmana; White, Justin K.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 2
  • DOI: 10.1021/ct400968v

The role of two-component regulatory system in β-lactam antibiotics resistance
journal, October 2018


β-Lactamases and β-Lactamase Inhibitors in the 21st Century
journal, August 2019

  • Tooke, Catherine L.; Hinchliffe, Philip; Bragginton, Eilis C.
  • Journal of Molecular Biology, Vol. 431, Issue 18
  • DOI: 10.1016/j.jmb.2019.04.002

HTMD: High-Throughput Molecular Dynamics for Molecular Discovery
journal, March 2016

  • Doerr, S.; Harvey, M. J.; Noé, Frank
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 4
  • DOI: 10.1021/acs.jctc.6b00049

Structural Basis for the Role of Asp-120 in Metallo-β-lactamases ,
journal, September 2007

  • Crisp, Jonathan; Conners, Rebecca; Garrity, James D.
  • Biochemistry, Vol. 46, Issue 37
  • DOI: 10.1021/bi700707u

β-Lactams and β-Lactamase Inhibitors: An Overview
journal, June 2016


Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes
journal, June 2016

  • Hinchliffe, Philip; González, Mariano M.; Mojica, Maria F.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1601368113

Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen
journal, January 2012


Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning
journal, February 2019

  • Romero, Raquel; Ramanathan, Arvind; Yuen, Tony
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 11
  • DOI: 10.1073/pnas.1818411116

1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases
journal, June 2017

  • Sevaille, Laurent; Gavara, Laurent; Bebrone, Carine
  • ChemMedChem, Vol. 12, Issue 12
  • DOI: 10.1002/cmdc.201700186

Three Decades of  -Lactamase Inhibitors
journal, January 2010

  • Drawz, S. M.; Bonomo, R. A.
  • Clinical Microbiology Reviews, Vol. 23, Issue 1
  • DOI: 10.1128/CMR.00037-09

Investigation of the folding pathway of the TEM-1 β-lactamase
journal, June 1995

  • Vanhove, Marc; Raquet, Xavier; Frère, Jean-Marie
  • Proteins: Structure, Function, and Genetics, Vol. 22, Issue 2
  • DOI: 10.1002/prot.340220204

The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities
journal, January 2020


Novel Mechanism of Hydrolysis of Therapeutic β-Lactams byStenotrophomonas maltophilia L1 Metallo-β-lactamase
journal, September 2001

  • Spencer, James; Clarke, Anthony R.; Walsh, Timothy R.
  • Journal of Biological Chemistry, Vol. 276, Issue 36
  • DOI: 10.1074/jbc.M105550200

Crystallography and QM/MM Simulations Identify Preferential Binding of Hydrolyzed Carbapenem and Penem Antibiotics to the L1 Metallo-β-Lactamase in the Imine Form
journal, October 2021

  • Twidale, Rebecca M.; Hinchliffe, Philip; Spencer, James
  • Journal of Chemical Information and Modeling, Vol. 61, Issue 12
  • DOI: 10.1021/acs.jcim.1c00663

Deep clustering of protein folding simulations
journal, December 2018


Effects of Asp-179 mutations in TEMpUC19 beta-lactamase on susceptibility to beta-lactams
journal, August 1995

  • Vakulenko, S. B.; Toth, M.; Taibi, P.
  • Antimicrobial Agents and Chemotherapy, Vol. 39, Issue 8
  • DOI: 10.1128/AAC.39.8.1878

Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among Stenotrophomonas maltophilia Isolates in the United States
journal, August 2019

  • Mojica, Maria F.; Rutter, Joseph D.; Taracila, Magdalena
  • mBio, Vol. 10, Issue 4
  • DOI: 10.1128/mBio.00405-19

Editorial: A Multidisciplinary Look at Stenotrophomonas maltophilia: An Emerging Multi-Drug-Resistant Global Opportunistic Pathogen
journal, August 2017

  • Brooke, Joanna S.; Di Bonaventura, Giovanni; Berg, Gabriele
  • Frontiers in Microbiology, Vol. 8
  • DOI: 10.3389/fmicb.2017.01511

PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations
journal, June 2017

  • Martínez-Rosell, Gerard; Giorgino, Toni; De Fabritiis, Gianni
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 7
  • DOI: 10.1021/acs.jcim.7b00190

The Role of Hydrophobic Nodes in the Dynamics of Class A β-Lactamases
journal, September 2021


Antibiotic Recognition by Binuclear Metallo-β-Lactamases Revealed by X-ray Crystallography #
journal, October 2005

  • Spencer, James; Read, Jonathan; Sessions, Richard B.
  • Journal of the American Chemical Society, Vol. 127, Issue 41
  • DOI: 10.1021/ja0536062

PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models
journal, October 2015

  • Scherer, Martin K.; Trendelkamp-Schroer, Benjamin; Paul, Fabian
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 11
  • DOI: 10.1021/acs.jctc.5b00743

MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories
journal, October 2015

  • McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.
  • Biophysical Journal, Vol. 109, Issue 8
  • DOI: 10.1016/j.bpj.2015.08.015

Staggered Mesh Ewald: An Extension of the Smooth Particle-Mesh Ewald Method Adding Great Versatility
journal, August 2009

  • Cerutti, David S.; Duke, Robert E.; Darden, Thomas A.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 9
  • DOI: 10.1021/ct9001015

ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale
journal, May 2009

  • Harvey, M. J.; Giupponi, G.; Fabritiis, G. De
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 6
  • DOI: 10.1021/ct9000685

Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy
journal, November 2017

  • Adegoke, Anthony A.; Stenström, Thor A.; Okoh, Anthony I.
  • Frontiers in Microbiology, Vol. 8
  • DOI: 10.3389/fmicb.2017.02276

Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory
journal, March 2016

  • González, Mariano M.; Abriata, Luciano A.; Tomatis, Pablo E.
  • Molecular Biology and Evolution, Vol. 33, Issue 7
  • DOI: 10.1093/molbev/msw052

Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions
journal, August 2017

  • Brylinski, Michal
  • Chemical Biology & Drug Design, Vol. 91, Issue 2
  • DOI: 10.1111/cbdd.13084

Structure-based enzyme engineering improves donor-substrate recognition of Arabidopsis thaliana glycosyltransferases
journal, August 2020

  • Akere, Aishat; Chen, Serena H.; Liu, Xiaohan
  • Biochemical Journal, Vol. 477, Issue 15
  • DOI: 10.1042/BCJ20200477

Update of the Standard Numbering Scheme for Class B  -Lactamases
journal, June 2004


Metallo-β-lactamase structure and function: Metallo-β-lactamase structure and function
journal, November 2012


Characterization of Monomeric L1 Metallo-β-lactamase and the Role of the N-terminal Extension in Negative Cooperativity and Antibiotic Hydrolysis
journal, April 2002

  • Simm, Alan M.; Higgins, Catherine S.; Carenbauer, Anne L.
  • Journal of Biological Chemistry, Vol. 277, Issue 27
  • DOI: 10.1074/jbc.M201524200

Metal Content of Metallo-β-lactamase L1 Is Determined by the Bioavailability of Metal Ions
journal, July 2008

  • Hu, Zhenxin; Gunasekera, Thusitha S.; Spadafora, Lauren
  • Biochemistry, Vol. 47, Issue 30
  • DOI: 10.1021/bi8004768

Defining the architecture of KPC-2 Carbapenemase: identifying allosteric networks to fight antibiotics resistance
journal, August 2018

  • Galdadas, Ioannis; Lovera, Silvia; Pérez-Hernández, Guillermo
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-31176-0

Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design
journal, June 2021


Metallo-β-lactamases and a tug-of-war for the available zinc at the host–pathogen interface
journal, February 2022

  • Bahr, Guillermo; González, Lisandro J.; Vila, Alejandro J.
  • Current Opinion in Chemical Biology, Vol. 66
  • DOI: 10.1016/j.cbpa.2021.102103

Induction of L1 and L2 β-Lactamase Production in Stenotrophomonas maltophilia Is Dependent on an AmpR-Type Regulator
journal, April 2008

  • Okazaki, Aki; Avison, Matthew B.
  • Antimicrobial Agents and Chemotherapy, Vol. 52, Issue 4
  • DOI: 10.1128/AAC.01485-07

Structural Insights into the Design of Inhibitors for the L1 Metallo-β-lactamase from Stenotrophomonas maltophilia
journal, January 2008


Towards Native Execution of Deep Learning on a Leadership-Class HPC System
conference, May 2019

  • Yoginath, Srikanth; Alam, Maksudul; Ramanathan, Arvind
  • 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
  • DOI: 10.1109/IPDPSW.2019.00160

Hydroxyl Groups in the ββ Sandwich of Metallo-β-lactamases Favor Enzyme Activity: Tyr218 and Ser262 Pull Down the Lid
journal, February 2007


MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
journal, April 2011

  • Michaud-Agrawal, Naveen; Denning, Elizabeth J.; Woolf, Thomas B.
  • Journal of Computational Chemistry, Vol. 32, Issue 10
  • DOI: 10.1002/jcc.21787

Epidemiology of β-Lactamase-Producing Pathogens
journal, February 2020

  • Bush, Karen; Bradford, Patricia A.
  • Clinical Microbiology Reviews, Vol. 33, Issue 2
  • DOI: 10.1128/CMR.00047-19

Matplotlib: A 2D Graphics Environment
journal, January 2007


Structural Survey of Zinc-Containing Proteins and Development of the Zinc AMBER Force Field (ZAFF)
journal, August 2010

  • Peters, Martin B.; Yang, Yue; Wang, Bing
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 9
  • DOI: 10.1021/ct1002626

The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 å resolution 1 1Edited by K. Nagai
journal, November 1998

  • Ullah, J. H.; Walsh, T. R.; Taylor, I. A.
  • Journal of Molecular Biology, Vol. 284, Issue 1
  • DOI: 10.1006/jmbi.1998.2148

The urgent need for metallo-β-lactamase inhibitors: an unattended global threat
journal, January 2022

  • Mojica, Maria F.; Rossi, Maria-Agustina; Vila, Alejandro J.
  • The Lancet Infectious Diseases, Vol. 22, Issue 1
  • DOI: 10.1016/S1473-3099(20)30868-9

β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates
journal, January 2021

  • Mora-Ochomogo, Montserrat; Lohans, Christopher T.
  • RSC Medicinal Chemistry, Vol. 12, Issue 10
  • DOI: 10.1039/d1md00200g

Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility
journal, December 2008

  • Tomatis, P. E.; Fabiane, S. M.; Simona, F.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 52
  • DOI: 10.1073/pnas.0807989106