DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases

Abstract

The hydrolysis of β-lactam antibiotics by β-lactamase enzymes is the most prominent antibiotic resistance mechanism for many pathogenic bacteria. Out of this broad class of enzymes, metallo-β-lactamases are of special clinical interest because of their broad substrate specificities. Several in vitro inhibitors for various metallo-β-lactamases have been reported with no clinical efficacy. Previously, we described a 10-nucleotide single stranded DNA aptamer (10-mer) that inhibits Bacillus cereus 5/B/6 metallo-β-lactamase very effectively. Here, we find that the aptamer shows uncompetitive inhibition of Bacillus cereus 5/B/ 6 metallo-β-lactamase during cefuroxime hydrolysis. To understand the mechanism of inhibition, we report a 2.5 Å resolution X-ray crystal structure and solution-state NMR analysis of the free enzyme. Chemical shift perturbations were observed in the HSQC spectra for several residues upon titrating with increasing concentrations of the 10-mer. In the X-ray crystal structure, these residues are distal to the active site, suggesting an allosteric mechanism for the aptamer inhibition of the enzyme. HADDOCK molecular docking simulations suggest that the 10-mer docks 26 Å from the active site. We then mutated the three lysine residues in the basic binding patch to glutamine and measured the catalytic activity and inhibition by the 10-mer. No significant inhibition of these mutantsmore » was observed by the 10-mer as compared to wild type. Interestingly, mutation of Lys50 (Lys78; according to standard MBL numbering system) resulted in reduced enzymatic activity relative to wild type in the absence of inhibitor, further highlighting an allosteric mechanism for inhibition.« less

Authors:
 [1]; ORCiD logo [1];  [1];  [2];  [1];  [1]; ORCiD logo [1]
  1. Texas Tech Univ., Lubbock, TX (United States)
  2. Texas Tech Univ. Health Sciences Center, Lubbock, TX (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institute of General Medical Sciences (NIGMS); National Institutes of Health (NIH); National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); Welch Foundation
OSTI Identifier:
1903990
Grant/Contract Number:  
AC01-76SF00515; AC02-76SF00515; AC03-76SF00515; P41GM103393; R01AR063634; R35GM124979; D-1876
Resource Type:
Accepted Manuscript
Journal Name:
PLoS ONE
Additional Journal Information:
Journal Volume: 14; Journal Issue: 4; Journal ID: ISSN 1932-6203
Publisher:
Public Library of Science
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; crystal structure; enzyme inhibitors; hydrolysis; enzyme structure; Bacillus cereus; lysine; enzymes; antibiotics

Citation Formats

Khan, Nazmul H., Bui, Anthony A., Xiao, Yang, Sutton, R. Bryan, Shaw, Robert W., Wylie, Benjamin J., and Latham, Michael P. A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases. United States: N. p., 2019. Web. doi:10.1371/journal.pone.0214440.
Khan, Nazmul H., Bui, Anthony A., Xiao, Yang, Sutton, R. Bryan, Shaw, Robert W., Wylie, Benjamin J., & Latham, Michael P. A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases. United States. https://doi.org/10.1371/journal.pone.0214440
Khan, Nazmul H., Bui, Anthony A., Xiao, Yang, Sutton, R. Bryan, Shaw, Robert W., Wylie, Benjamin J., and Latham, Michael P. Mon . "A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases". United States. https://doi.org/10.1371/journal.pone.0214440. https://www.osti.gov/servlets/purl/1903990.
@article{osti_1903990,
title = {A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases},
author = {Khan, Nazmul H. and Bui, Anthony A. and Xiao, Yang and Sutton, R. Bryan and Shaw, Robert W. and Wylie, Benjamin J. and Latham, Michael P.},
abstractNote = {The hydrolysis of β-lactam antibiotics by β-lactamase enzymes is the most prominent antibiotic resistance mechanism for many pathogenic bacteria. Out of this broad class of enzymes, metallo-β-lactamases are of special clinical interest because of their broad substrate specificities. Several in vitro inhibitors for various metallo-β-lactamases have been reported with no clinical efficacy. Previously, we described a 10-nucleotide single stranded DNA aptamer (10-mer) that inhibits Bacillus cereus 5/B/6 metallo-β-lactamase very effectively. Here, we find that the aptamer shows uncompetitive inhibition of Bacillus cereus 5/B/ 6 metallo-β-lactamase during cefuroxime hydrolysis. To understand the mechanism of inhibition, we report a 2.5 Å resolution X-ray crystal structure and solution-state NMR analysis of the free enzyme. Chemical shift perturbations were observed in the HSQC spectra for several residues upon titrating with increasing concentrations of the 10-mer. In the X-ray crystal structure, these residues are distal to the active site, suggesting an allosteric mechanism for the aptamer inhibition of the enzyme. HADDOCK molecular docking simulations suggest that the 10-mer docks 26 Å from the active site. We then mutated the three lysine residues in the basic binding patch to glutamine and measured the catalytic activity and inhibition by the 10-mer. No significant inhibition of these mutants was observed by the 10-mer as compared to wild type. Interestingly, mutation of Lys50 (Lys78; according to standard MBL numbering system) resulted in reduced enzymatic activity relative to wild type in the absence of inhibitor, further highlighting an allosteric mechanism for inhibition.},
doi = {10.1371/journal.pone.0214440},
journal = {PLoS ONE},
number = 4,
volume = 14,
place = {United States},
year = {Mon Apr 22 00:00:00 EDT 2019},
month = {Mon Apr 22 00:00:00 EDT 2019}
}

Works referenced in this record:

Structural and Mechanistic Insights into NDM-1 Catalyzed Hydrolysis of Cephalosporins
journal, October 2014

  • Feng, Han; Ding, Jingjin; Zhu, Deyu
  • Journal of the American Chemical Society, Vol. 136, Issue 42
  • DOI: 10.1021/ja508388e

Monitoring Conformational Changes in the NDM-1 Metallo-β-lactamase by 19 F NMR Spectroscopy
journal, February 2014

  • Rydzik, Anna M.; Brem, Jürgen; van Berkel, Sander S.
  • Angewandte Chemie International Edition, Vol. 53, Issue 12
  • DOI: 10.1002/anie.201310866

Zinc as a Cofactor for Cephalosporinase from Bacillus cereus 569
journal, January 1966

  • Sabath, L. D.; Abraham, E. P.
  • Biochemical Journal, Vol. 98, Issue 1
  • DOI: 10.1042/bj0980011C

3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-D imensional Nu cleic Acid S tructures
journal, August 2017

  • Patro, L. Ponoop Prasad; Kumar, Abhishek; Kolimi, Narendar
  • Journal of Molecular Biology, Vol. 429, Issue 16
  • DOI: 10.1016/j.jmb.2017.06.013

Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance
journal, June 2014

  • King, Andrew M.; Reid-Yu, Sarah A.; Wang, Wenliang
  • Nature, Vol. 510, Issue 7506
  • DOI: 10.1038/nature13445

Clinical Pharmacokinetics of Dasabuvir
journal, March 2017


Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes
journal, June 2016

  • Hinchliffe, Philip; González, Mariano M.; Mojica, Maria F.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1601368113

Beta-lactamases and bacterial resistance to antibiotics
journal, May 1995


Protein Measurement with the Folin Phenol Reagent
journal, November 1951


Comparison of β-lactamase II from Bacillus cereus 569/H/9 with a β-lactamase from Bacillus cereus 5/B/6
journal, February 1975

  • Davies, R. B.; Abraham, E. P.; Fleming, J.
  • Biochemical Journal, Vol. 145, Issue 2
  • DOI: 10.1042/bj1450409

How good are my data and what is the resolution?
journal, June 2013

  • Evans, Philip R.; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913000061

The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis
journal, December 2017


Why Are Proteins Charged? Networks of Charge–Charge Interactions in Proteins Measured by Charge Ladders and Capillary Electrophoresis
journal, May 2006

  • Gitlin, Irina; Carbeck, Jeffrey D.; Whitesides, George M.
  • Angewandte Chemie International Edition, Vol. 45, Issue 19
  • DOI: 10.1002/anie.200502530

Conformational Changes in the Metallo-β-lactamase ImiS During the Catalytic Reaction: An EPR Spectrokinetic Study of Co(II)-Spin Label Interactions
journal, June 2008

  • Sharma, Narayan; Hu, Zhenxin; Crowder, Michael W.
  • Journal of the American Chemical Society, Vol. 130, Issue 26
  • DOI: 10.1021/ja0774562

Use of Allosteric Targets in the Discovery of Safer Drugs
journal, January 2013

  • Grover, Ashok Kumar
  • Medical Principles and Practice, Vol. 22, Issue 5
  • DOI: 10.1159/000350417

The continuing challenge of ESBLs
journal, October 2007


Biochemical Characterization of the FEZ-1 Metallo-β-Lactamase of Legionella gormanii ATCC 33297 T Produced in Escherichia coli
journal, April 2001


Allosteric Modulators: An Emerging Concept in Drug Discovery
journal, January 2015

  • Abdel-Magid, Ahmed F.
  • ACS Medicinal Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/ml5005365

Solution NMR Spectroscopy for the Study of Enzyme Allostery
journal, January 2016


Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory
journal, March 2016

  • González, Mariano M.; Abriata, Luciano A.; Tomatis, Pablo E.
  • Molecular Biology and Evolution, Vol. 33, Issue 7
  • DOI: 10.1093/molbev/msw052

Standard Numbering Scheme for Class B  -Lactamases
journal, March 2001


Modeling Domino Effects in Enzymes:  Molecular Basis of the Substrate Specificity of the Bacterial Metallo-β-lactamases IMP-1 and IMP-6
journal, July 2003

  • Oelschlaeger, Peter; Schmid, Rolf D.; Pleiss, Juergen
  • Biochemistry, Vol. 42, Issue 30
  • DOI: 10.1021/bi0300332

Erratum: Aptamers as targeted therapeutics: current potential and challenges
journal, April 2017

  • Zhou, Jiehua; Rossi, John
  • Nature Reviews Drug Discovery, Vol. 16, Issue 6
  • DOI: 10.1038/nrd.2017.86

The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold.
journal, October 1995


Allosteric inhibition of VIM metallo-β-lactamases by a camelid nanobody
journal, February 2013

  • Sohier, Jean S.; Laurent, Clémentine; Chevigné, Andy
  • Biochemical Journal, Vol. 450, Issue 3
  • DOI: 10.1042/BJ20121305

Overcoming differences: The catalytic mechanism of metallo-β-lactamases
journal, August 2015


GraphPad Prism, Data Analysis, and Scientific Graphing
journal, March 1997

  • Swift, Mary L.
  • Journal of Chemical Information and Computer Sciences, Vol. 37, Issue 2
  • DOI: 10.1021/ci960402j

Update of the Standard Numbering Scheme for Class B  -Lactamases
journal, June 2004


Metallo-β-lactamase structure and function: Metallo-β-lactamase structure and function
journal, November 2012


Antibiotic Resistance in Bacteria: Novel Metalloenzyme Inhibitors
journal, October 2009


Separation, purification and properties of β-lactamase I and β-lactamase II from Bacillus cereus 569/H/9
journal, October 1974

  • Davies, Richard B.; Abraham, E. P.; Melling, J.
  • Biochemical Journal, Vol. 143, Issue 1
  • DOI: 10.1042/bj1430115

The potential of oligonucleotides for therapeutic applications
journal, December 2006


Aptamers as Drug Delivery Vehicles
journal, August 2014

  • Kruspe, Sven; Mittelberger, Florian; Szameit, Kristina
  • ChemMedChem, Vol. 9, Issue 9
  • DOI: 10.1002/cmdc.201402163

TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts
journal, June 2009

  • Shen, Yang; Delaglio, Frank; Cornilescu, Gabriel
  • Journal of Biomolecular NMR, Vol. 44, Issue 4
  • DOI: 10.1007/s10858-009-9333-z

Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease
journal, June 2005

  • Sperka, Tamás; Pitlik, János; Bagossi, Péter
  • Bioorganic & Medicinal Chemistry Letters, Vol. 15, Issue 12
  • DOI: 10.1016/j.bmcl.2005.04.020

Aptamers: Problems, Solutions and Prospects
journal, December 2013


Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins
journal, October 1990


Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples
journal, June 2012

  • Lange, O. F.; Rossi, P.; Sgourakis, N. G.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 27
  • DOI: 10.1073/pnas.1203013109

New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia?
journal, December 2010


B1-Metallo-β-Lactamases: Where Do We Stand?
journal, May 2016


The CCPN data model for NMR spectroscopy: Development of a software pipeline
journal, April 2005

  • Vranken, Wim F.; Boucher, Wayne; Stevens, Tim J.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 59, Issue 4
  • DOI: 10.1002/prot.20449

Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles
journal, March 2016

  • Makena, Anne; Düzgün, Azer Ö.; Brem, Jürgen
  • Antimicrobial Agents and Chemotherapy, Vol. 60, Issue 3
  • DOI: 10.1128/AAC.01768-15

Mimicking natural evolution in metallo-β-lactamases through second-shell ligand mutations
journal, September 2005

  • Tomatis, Pablo E.; Rasia, Rodolfo M.; Segovia, Lorenzo
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 39
  • DOI: 10.1073/pnas.0503495102

Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition
journal, November 2014

  • Brem, Jürgen; van Berkel, Sander S.; Aik, WeiShen
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2110

Association of a Zn2+ containing metallo β-lactamase with the anticancer antibiotic mithramycin
journal, January 2015


HADDOCK:  A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information
journal, February 2003

  • Dominguez, Cyril; Boelens, Rolf; Bonvin, Alexandre M. J. J.
  • Journal of the American Chemical Society, Vol. 125, Issue 7
  • DOI: 10.1021/ja026939x

Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity
journal, December 1992

  • Kay, Lewis; Keifer, Paul; Saarinen, Tim
  • Journal of the American Chemical Society, Vol. 114, Issue 26
  • DOI: 10.1021/ja00052a088

Monitoring Conformational Changes in the NDM-1 Metallo-β-lactamase by 19 F NMR Spectroscopy
journal, February 2014

  • Rydzik, Anna M.; Brem, Jürgen; van Berkel, Sander S.
  • Angewandte Chemie International Edition, Vol. 53, Issue 12
  • DOI: 10.1002/anie.201310866

Why Are Proteins Charged? Networks of Charge—Charge Interactions in Proteins Measured by Charge Ladders and Capillary Electrophoresis
journal, August 2006

  • Gitlin, Irina; Carbeck, Jeffrey D.; Whitesides, George M.
  • ChemInform, Vol. 37, Issue 35
  • DOI: 10.1002/chin.200635285

Increasing the buffering capacity of minimal media leads to higher protein yield
journal, January 2019

  • Azatian, Stephan B.; Kaur, Navneet; Latham, Michael P.
  • Journal of Biomolecular NMR, Vol. 73, Issue 1-2
  • DOI: 10.1007/s10858-018-00222-4

Chemical shift assignments of the catalytic and ATP-binding domain of HK853 from Thermotoga maritime
journal, January 2019


Discovery of a small molecule ligand of FRS2 that inhibits invasion and tumor growth
journal, December 2022

  • Santhana Kumar, Karthiga; Brunner, Cyrill; Schuster, Matthias
  • Cellular Oncology, Vol. 46, Issue 2
  • DOI: 10.1007/s13402-022-00753-x

Clinical Pharmacokinetics of Dasabuvir
journal, March 2017


Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy
journal, June 1991

  • Palmer, Arthur G.; Cavanagh, John; Wright, Peter E.
  • Journal of Magnetic Resonance (1969), Vol. 93, Issue 1
  • DOI: 10.1016/0022-2364(91)90036-s

An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins
journal, August 1992


Hyperexpression in Escherichia coli, purification, and characterization of the metallo-β-lactamase of Bacillus cereus 5/B/6
journal, April 1991

  • Shaw, Robert W.; Clark, Sherri D.; Hilliard, Newton P.
  • Protein Expression and Purification, Vol. 2, Issue 2-3
  • DOI: 10.1016/1046-5928(91)90064-p

Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease
journal, June 2005

  • Sperka, Tamás; Pitlik, János; Bagossi, Péter
  • Bioorganic & Medicinal Chemistry Letters, Vol. 15, Issue 12
  • DOI: 10.1016/j.bmcl.2005.04.020

Overcoming differences: The catalytic mechanism of metallo-β-lactamases
journal, August 2015


Association of a Zn2+ containing metallo β-lactamase with the anticancer antibiotic mithramycin
journal, January 2015


3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-D imensional Nu cleic Acid S tructures
journal, August 2017

  • Patro, L. Ponoop Prasad; Kumar, Abhishek; Kolimi, Narendar
  • Journal of Molecular Biology, Vol. 429, Issue 16
  • DOI: 10.1016/j.jmb.2017.06.013

The potential of oligonucleotides for therapeutic applications
journal, December 2006


DNA aptamers and DNA enzymes
journal, June 1997


Metallo-β-lactamase: structure and mechanism
journal, October 1999


Metallo-β-lactamases: a last frontier for β-lactams?
journal, May 2011

  • Cornaglia, Giuseppe; Giamarellou, Helen; Rossolini, Gian Maria
  • The Lancet Infectious Diseases, Vol. 11, Issue 5
  • DOI: 10.1016/s1473-3099(11)70056-1

Solution NMR Spectroscopy for the Study of Enzyme Allostery
journal, January 2016


Modeling Domino Effects in Enzymes:  Molecular Basis of the Substrate Specificity of the Bacterial Metallo-β-lactamases IMP-1 and IMP-6
journal, July 2003

  • Oelschlaeger, Peter; Schmid, Rolf D.; Pleiss, Juergen
  • Biochemistry, Vol. 42, Issue 30
  • DOI: 10.1021/bi0300332

GraphPad Prism, Data Analysis, and Scientific Graphing
journal, March 1997

  • Swift, Mary L.
  • Journal of Chemical Information and Computer Sciences, Vol. 37, Issue 2
  • DOI: 10.1021/ci960402j

HADDOCK:  A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information
journal, February 2003

  • Dominguez, Cyril; Boelens, Rolf; Bonvin, Alexandre M. J. J.
  • Journal of the American Chemical Society, Vol. 125, Issue 7
  • DOI: 10.1021/ja026939x

Conformational Changes in the Metallo-β-lactamase ImiS During the Catalytic Reaction: An EPR Spectrokinetic Study of Co(II)-Spin Label Interactions
journal, June 2008

  • Sharma, Narayan; Hu, Zhenxin; Crowder, Michael W.
  • Journal of the American Chemical Society, Vol. 130, Issue 26
  • DOI: 10.1021/ja0774562

Allosteric Modulators: An Emerging Concept in Drug Discovery
journal, January 2015

  • Abdel-Magid, Ahmed F.
  • ACS Medicinal Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/ml5005365

Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy
journal, January 2014

  • Sun, Hongguang; Zhu, Xun; Lu, Patrick Y.
  • Molecular Therapy - Nucleic Acids, Vol. 3
  • DOI: 10.1038/mtna.2014.32

Aptamers as targeted therapeutics: current potential and challenges
journal, November 2016

  • Zhou, Jiehua; Rossi, John
  • Nature Reviews Drug Discovery, Vol. 16, Issue 3
  • DOI: 10.1038/nrd.2016.199

A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases
journal, September 2017

  • Lisa, María-Natalia; Palacios, Antonela R.; Aitha, Mahesh
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00601-9

The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis
journal, December 2017


Structural basis for substrate binding and catalysis by a self-alkylating ribozyme
journal, January 2022


Cryo-EM structure of an amyloid fibril formed by full-length human prion protein
journal, June 2020

  • Wang, Li-Qiang; Zhao, Kun; Yuan, Han-Ye
  • Nature Structural & Molecular Biology, Vol. 27, Issue 6
  • DOI: 10.1038/s41594-020-0441-5

In-cell NMR as a sensitive tool to monitor physiological condition of Escherichia coli
journal, February 2020

  • Sugiki, Toshihiko; Yamaguchi, Yoshihiro; Fujiwara, Toshimichi
  • Scientific Reports, Vol. 10, Issue 1
  • DOI: 10.1038/s41598-020-59076-2

Separation, purification and properties of β-lactamase I and β-lactamase II from Bacillus cereus 569/H/9
journal, October 1974

  • Davies, Richard B.; Abraham, E. P.; Melling, J.
  • Biochemical Journal, Vol. 143, Issue 1
  • DOI: 10.1042/bj1430115

Comparison of β-lactamase II from Bacillus cereus 569/H/9 with a β-lactamase from Bacillus cereus 5/B/6
journal, February 1975

  • Davies, R. B.; Abraham, E. P.; Fleming, J.
  • Biochemical Journal, Vol. 145, Issue 2
  • DOI: 10.1042/bj1450409

Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid
journal, November 2013

  • Karsisiotis, Andreas Ioannis; Damblon, Christian F.; Roberts, Gordon C. K.
  • Biochemical Journal, Vol. 456, Issue 3
  • DOI: 10.1042/bj20131003

Mimicking natural evolution in metallo-β-lactamases through second-shell ligand mutations
journal, September 2005

  • Tomatis, Pablo E.; Rasia, Rodolfo M.; Segovia, Lorenzo
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 39
  • DOI: 10.1073/pnas.0503495102

Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples
journal, June 2012

  • Lange, O. F.; Rossi, P.; Sgourakis, N. G.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 27
  • DOI: 10.1073/pnas.1203013109

Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes
journal, June 2016

  • Hinchliffe, Philip; González, Mariano M.; Mojica, Maria F.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1601368113

Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector
journal, December 1988


Beta-lactamases and bacterial resistance to antibiotics
journal, May 1995


New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia?
journal, December 2010


Antibiotic Resistance in Bacteria: Novel Metalloenzyme Inhibitors
journal, October 2009


Systematic Analysis of Metallo-β-Lactamases Using an Automated Database
journal, July 2012

  • Widmann, Michael; Pleiss, Jürgen; Oelschlaeger, Peter
  • Antimicrobial Agents and Chemotherapy, Vol. 56, Issue 7
  • DOI: 10.1128/aac.00255-12

In vitro activity of temocillin (BRL 17421), a novel beta-lactamase-stable penicillin
journal, July 1982


Three Decades of  -Lactamase Inhibitors
journal, January 2010

  • Drawz, S. M.; Bonomo, R. A.
  • Clinical Microbiology Reviews, Vol. 23, Issue 1
  • DOI: 10.1128/cmr.00037-09

Metallo- -Lactamases: the Quiet before the Storm?
journal, April 2005


B1-Metallo-β-Lactamases: Where Do We Stand?
journal, May 2016


Inhibition of Bacillus anthracis metallo-β-lactamase by compounds with hydroxamic acid functionality
text, January 2016


Works referencing / citing this record:

A Bottom-Up Approach for Developing Aptasensors for Abused Drugs: Biosensors in Forensics
journal, October 2019

  • Celikbas, Eda; Balaban, Simge; Evran, Serap
  • Biosensors, Vol. 9, Issue 4
  • DOI: 10.3390/bios9040118