DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode

Abstract

Si anodes for Li-ion batteries are notorious for their large volume expansion during lithiation and the corresponding detrimental effects on cycle life. However, calendar life is the primary roadblock for widespread adoption. During calendar life aging, the main origin of impedance increase and capacity fade is attributed to the instability of the solid electrolyte interphase (SEI). In this work, we use ex situ nano-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy to characterize the structure and composition of the SEI layer on amorphous Si thin films after an accelerated calendar aging protocol. The characterization of the SEI on non-washed and washed electrodes shows that brief washing in dimethyl carbonate results in large changes to the film chemistry and topography. Detailed examination of the non-washed electrodes during the first lithiation and after an accelerated calendar aging protocol reveals that PF6 and its decomposition products tend to accumulate in the SEI due to the preferential transport of PF6 ions through polyethylene oxide-like species in the organic part of the SEI layer. This work demonstrates the importance of evaluating the SEI layer in its intrinsic, undisturbed form and new strategies to improve the passivation of the SEI layer are proposed.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [2];  [1]
  1. Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  2. Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
OSTI Identifier:
1922120
Alternate Identifier(s):
OSTI ID: 2234177
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Name: ACS Applied Materials and Interfaces Journal Volume: 15 Journal Issue: 5; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; silicon; anode; SEI; electrolyte; interface; FTIR; spectroscopy; electrodes; electrolytes; infrared light; layers; surface chemistry

Citation Formats

Dopilka, Andrew, Gu, Yueran, Larson, Jonathan M., Zorba, Vassilia, and Kostecki, Robert. Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode. United States: N. p., 2023. Web. doi:10.1021/acsami.2c19484.
Dopilka, Andrew, Gu, Yueran, Larson, Jonathan M., Zorba, Vassilia, & Kostecki, Robert. Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode. United States. https://doi.org/10.1021/acsami.2c19484
Dopilka, Andrew, Gu, Yueran, Larson, Jonathan M., Zorba, Vassilia, and Kostecki, Robert. Wed . "Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode". United States. https://doi.org/10.1021/acsami.2c19484.
@article{osti_1922120,
title = {Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode},
author = {Dopilka, Andrew and Gu, Yueran and Larson, Jonathan M. and Zorba, Vassilia and Kostecki, Robert},
abstractNote = {Si anodes for Li-ion batteries are notorious for their large volume expansion during lithiation and the corresponding detrimental effects on cycle life. However, calendar life is the primary roadblock for widespread adoption. During calendar life aging, the main origin of impedance increase and capacity fade is attributed to the instability of the solid electrolyte interphase (SEI). In this work, we use ex situ nano-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy to characterize the structure and composition of the SEI layer on amorphous Si thin films after an accelerated calendar aging protocol. The characterization of the SEI on non-washed and washed electrodes shows that brief washing in dimethyl carbonate results in large changes to the film chemistry and topography. Detailed examination of the non-washed electrodes during the first lithiation and after an accelerated calendar aging protocol reveals that PF6– and its decomposition products tend to accumulate in the SEI due to the preferential transport of PF6– ions through polyethylene oxide-like species in the organic part of the SEI layer. This work demonstrates the importance of evaluating the SEI layer in its intrinsic, undisturbed form and new strategies to improve the passivation of the SEI layer are proposed.},
doi = {10.1021/acsami.2c19484},
journal = {ACS Applied Materials and Interfaces},
number = 5,
volume = 15,
place = {United States},
year = {Wed Jan 25 00:00:00 EST 2023},
month = {Wed Jan 25 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsami.2c19484

Save / Share:

Works referenced in this record:

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

A Secondary Ion Mass Spectrometry Study on the Mechanisms of Amorphous Silicon Electrode Lithiation in Li-Ion Batteries
journal, January 2015

  • Hüger, Erwin; Jerliu, Bujar; Dörrer, Lars
  • Zeitschrift für Physikalische Chemie, Vol. 229, Issue 9
  • DOI: 10.1515/zpch-2014-0650

Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy
journal, October 2022

  • Swallow, Jack E. N.; Fraser, Michael W.; Kneusels, Nis-Julian H.
  • Nature Communications, Vol. 13, Issue 1
  • DOI: 10.1038/s41467-022-33691-1

Cryogenic Electron Microscopy for Energy Materials
journal, July 2021


An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries
journal, October 2017


Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
journal, March 2008


Synchrotron infrared nano-spectroscopy and -imaging
journal, August 2020


Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts
journal, January 2005

  • Gireaud, L.; Grugeon, S.; Laruelle, S.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872673

Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries
journal, February 2020

  • Steinrück, Hans-Georg; Cao, Chuntian; Veith, Gabriel M.
  • The Journal of Chemical Physics, Vol. 152, Issue 8
  • DOI: 10.1063/1.5142643

The electrochemical behavior of poly 1-pyrenemethyl methacrylate binder and its effect on the interfacial chemistry of a silicon electrode
journal, February 2018


IR Near-Field Spectroscopy and Imaging of Single Li x FePO 4 Microcrystals
journal, December 2014

  • Lucas, I. T.; McLeod, A. S.; Syzdek, J. S.
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl5010898

In situ FTIR study of the Cu electrode/ethylene carbonate+dimethyl carbonate solution interface
journal, April 2008


Dynamic Structure and Chemistry of the Silicon Solid-Electrolyte Interphase Visualized by Cryogenic Electron Microscopy
journal, November 2019


Intrinsic chemical reactivity of solid-electrolyte interphase components in silicon–lithium alloy anode batteries probed by FTIR spectroscopy
journal, January 2020

  • Pekarek, Ryan T.; Affolter, Alec; Baranowski, Lauryn L.
  • Journal of Materials Chemistry A, Vol. 8, Issue 16
  • DOI: 10.1039/C9TA13535A

The Effect of Pre-Analysis Washing on the Surface Film of Graphite Electrodes
journal, July 2016


Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
journal, January 2011

  • Li, Juchuan; Dozier, Alan K.; Li, Yunchao
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3574027

Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy
journal, August 2019


Quantifying Nanoscale Electromagnetic Fields in Near-Field Microscopy by Fourier Demodulation Analysis
journal, January 2020


25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
journal, August 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Nix, William D.
  • Advanced Materials, Vol. 25, Issue 36
  • DOI: 10.1002/adma.201301795

In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface
journal, March 2022


A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase
journal, March 2021


Identifying the components of the solid–electrolyte interphase in Li-ion batteries
journal, August 2019


Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode
journal, August 2015

  • Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. Kevin
  • The Journal of Physical Chemistry C, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcc.5b06817

Near-Field IR Nanoscale Imaging of the Solid Electrolyte Interphase on a HOPG Electrode
journal, January 2015

  • Ayache, Maurice; Jang, Dongyoun; Syzdek, Jaroslaw
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0101513jes

Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Normal Vibrations of the Polymer Molecules of Helical Conformation. IV. Polyethylene Oxide and Polyethylene‐ d 4 Oxide
journal, November 1964

  • Yoshihara, Toshio; Tadokoro, Hiroyuki; Murahashi, Shunsuke
  • The Journal of Chemical Physics, Vol. 41, Issue 9
  • DOI: 10.1063/1.1726373

NMR Study of the Degradation Products of Ethylene Carbonate in Silicon–Lithium Ion Batteries
journal, October 2019

  • Jin, Yanting; Kneusels, Nis-Julian H.; Grey, Clare P.
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 20
  • DOI: 10.1021/acs.jpclett.9b02454

XPS Valence Characterization of Lithium Salts as a Tool to Study Electrode/Electrolyte Interfaces of Li-Ion Batteries
journal, July 2006

  • Dedryvère, R.; Leroy, S.; Martinez, H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061624f

Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive
journal, July 2017


In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon
journal, January 2004

  • Hatchard, T. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1739217

The lithiation onset of amorphous silicon thin-film electrodes
journal, September 2022

  • Hüger, Erwin; Uxa, Daniel; Yang, Fuqian
  • Applied Physics Letters, Vol. 121, Issue 13
  • DOI: 10.1063/5.0109610

Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy
journal, April 2013

  • Govyadinov, Alexander A.; Amenabar, Iban; Huth, Florian
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 9
  • DOI: 10.1021/jz400453r

Enhanced resolution in subsurface near-field optical microscopy
journal, December 2011

  • Krutokhvostov, Roman; Govyadinov, Alexander A.; Stiegler, Johannes M.
  • Optics Express, Vol. 20, Issue 1
  • DOI: 10.1364/OE.20.000593

Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents
journal, April 2010

  • Tasaki, Ken; Harris, Stephen J.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 17
  • DOI: 10.1021/jp100013h

IR Near-Field Study of the Solid Electrolyte Interphase on a Tin Electrode
journal, March 2015

  • Ayache, Maurice; Lux, Simon Franz; Kostecki, Robert
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 7
  • DOI: 10.1021/acs.jpclett.5b00263

Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials
journal, January 2019


Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes
journal, August 2020

  • Hasa, Ivana; Haregewoin, Atetegeb M.; Zhang, Liang
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 36
  • DOI: 10.1021/acsami.0c09384

Role of the LiPF 6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study
journal, January 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303399v

Calendar aging of silicon-containing batteries
journal, September 2021

  • McBrayer, Josefine D.; Rodrigues, Marco-Tulio F.; Schulze, Maxwell C.
  • Nature Energy, Vol. 6, Issue 9
  • DOI: 10.1038/s41560-021-00883-w

Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF 6
journal, October 2017

  • Parimalam, Bharathy S.; MacIntosh, Alex D.; Kadam, Rahul
  • The Journal of Physical Chemistry C, Vol. 121, Issue 41
  • DOI: 10.1021/acs.jpcc.7b08433

A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries
journal, February 2006


Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes
journal, February 2011


Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate
journal, October 2017

  • Jin, Yanting; Kneusels, Nis-Julian H.; Magusin, Pieter C. M. M.
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b06834

Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study
journal, December 2007


What Makes Fluoroethylene Carbonate Different?
journal, June 2015

  • Shkrob, Ilya A.; Wishart, James F.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03591

Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
journal, January 2009

  • Tasaki, Ken; Goldberg, Alex; Lian, Jian-Jie
  • Journal of The Electrochemical Society, Vol. 156, Issue 12
  • DOI: 10.1149/1.3239850

Subsurface chemical nanoidentification by nano-FTIR spectroscopy
journal, July 2020


Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products
journal, December 2015


Nano-FTIR Absorption Spectroscopy of Molecular Fingerprints at 20 nm Spatial Resolution
journal, July 2012

  • Huth, Florian; Govyadinov, Alexander; Amarie, Sergiu
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl301159v

Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase
journal, September 2021


Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization
journal, January 2009


Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes
journal, August 2018


Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Pseudoheterodyne detection for background-free near-field spectroscopy
journal, September 2006

  • Ocelic, Nenad; Huber, Andreas; Hillenbrand, Rainer
  • Applied Physics Letters, Vol. 89, Issue 10
  • DOI: 10.1063/1.2348781

Gwyddion: an open-source software for SPM data analysis
journal, January 2012


Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF 6 /EC:EMC Electrolyte
journal, September 2005

  • Zhuang, Guorong V.; Xu, Kang; Yang, Hui
  • The Journal of Physical Chemistry B, Vol. 109, Issue 37
  • DOI: 10.1021/jp052474w

Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Capturing the swelling of solid-electrolyte interphase in lithium metal batteries
journal, January 2022


Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

An X-ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes
journal, July 2022


Solid state vibrational spectroscopy of anhydrous lithium hexafluorophosphate (LiPF6)
journal, October 2012


Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry
journal, January 2016

  • Fears, T. M.; Doucet, M.; Browning, J. F.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/C6CP00978F

Critical Evaluation of Potentiostatic Holds as Accelerated Predictors of Capacity Fade during Calendar Aging
journal, May 2022

  • Schulze, Maxwell C.; Rodrigues, Marco-Tulio F.; McBrayer, Josefine D.
  • Journal of The Electrochemical Society, Vol. 169, Issue 5
  • DOI: 10.1149/1945-7111/ac6f88