DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present

Abstract

Abstract Artificial photosynthesis strives to convert the energy of sunlight into sustainable, eco‐friendly solar fuels. However, systems with light‐driven water oxidation reaction (WOR) at pH=1 are rare. Broadly used [Ru(bpy) 3 ] 2+ (bpy=2,2’‐bipyridine) photosensitizer has a fixed +1.23 V potential which is insufficient to drive most water oxidation catalysts (WOCs) in acid, while Fe 2 O 3 , featuring the highly oxidizing holes, is not stable at low pH. Here, the key examples of Fe‐based metal–organic framework (MOF) water oxidation photoelectrocatalysts active at pH=1 are presented. Fe‐MIL‐126 and Fe MOF‐dcbpy structures were formed with 4,4’‐biphenyl dicarboxylate (bpdc), 2,2’‐bipyridine‐5,5’‐dicarboxylate (dcbpy) linkers and their mixtures. Presence of dcbpy linkers allows integration of metal‐based catalysts via coordination to 2,2’‐bipyridine fragments. Fe‐based MOFs were doped with Ru‐based precursors to achieve highly active MOFs bearing [Ru(bpy)(dcbpy)(H 2 O) 2 ] 2+ WOC. Materials were analyzed with X‐ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra‐red (FTIR) spectroscopy, resonance Raman, X‐ray absorption spectroscopy, fs optical pump‐probe, electron paramagnetic resonance (EPR), diffuse reflectance and electric conductivity measurements and were modeled by band structure calculations. It is shown that under reaction conditions, Fe III and Ru III oxidation states are present, indicating rate‐limiting electron transfer in MOF.more » Fe 3 O nodes emerge as photosensitizers able to drive prolonged O 2 evolution in acid. Further developments are possible via MOF's linker modification for enhanced light absorption, electrical conductivity, reduced MOF solubility in acid, Ru‐WOC modification for faster WOC catalysis, or Ru‐WOC substitution to 3d metal‐based systems. The findings give further insight for development of light‐driven water splitting systems based on Earth‐abundant metals.« less

Authors:
 [1];  [1];  [2];  [1];  [3];  [1]; ORCiD logo [1]
  1. Department of Physics and Astronomy Purdue University West Lafayette 47907 USA
  2. US Naval Research Laboratory Washington 20375 USA
  3. Argonne National Laboratory Argonne IL 60439 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1908402
Alternate Identifier(s):
OSTI ID: 1996057
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Name: ChemSusChem Journal Volume: 16 Journal Issue: 5; Journal ID: ISSN 1864-5631
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Ezhov, Roman, Ravari, Alireza K., Palenik, Mark, Loomis, Alexander, Meira, Debora M., Savikhin, Sergei, and Pushkar, Yulia. Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present. Germany: N. p., 2023. Web. doi:10.1002/cssc.202202124.
Ezhov, Roman, Ravari, Alireza K., Palenik, Mark, Loomis, Alexander, Meira, Debora M., Savikhin, Sergei, & Pushkar, Yulia. Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present. Germany. https://doi.org/10.1002/cssc.202202124
Ezhov, Roman, Ravari, Alireza K., Palenik, Mark, Loomis, Alexander, Meira, Debora M., Savikhin, Sergei, and Pushkar, Yulia. Mon . "Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present". Germany. https://doi.org/10.1002/cssc.202202124.
@article{osti_1908402,
title = {Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present},
author = {Ezhov, Roman and Ravari, Alireza K. and Palenik, Mark and Loomis, Alexander and Meira, Debora M. and Savikhin, Sergei and Pushkar, Yulia},
abstractNote = {Abstract Artificial photosynthesis strives to convert the energy of sunlight into sustainable, eco‐friendly solar fuels. However, systems with light‐driven water oxidation reaction (WOR) at pH=1 are rare. Broadly used [Ru(bpy) 3 ] 2+ (bpy=2,2’‐bipyridine) photosensitizer has a fixed +1.23 V potential which is insufficient to drive most water oxidation catalysts (WOCs) in acid, while Fe 2 O 3 , featuring the highly oxidizing holes, is not stable at low pH. Here, the key examples of Fe‐based metal–organic framework (MOF) water oxidation photoelectrocatalysts active at pH=1 are presented. Fe‐MIL‐126 and Fe MOF‐dcbpy structures were formed with 4,4’‐biphenyl dicarboxylate (bpdc), 2,2’‐bipyridine‐5,5’‐dicarboxylate (dcbpy) linkers and their mixtures. Presence of dcbpy linkers allows integration of metal‐based catalysts via coordination to 2,2’‐bipyridine fragments. Fe‐based MOFs were doped with Ru‐based precursors to achieve highly active MOFs bearing [Ru(bpy)(dcbpy)(H 2 O) 2 ] 2+ WOC. Materials were analyzed with X‐ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra‐red (FTIR) spectroscopy, resonance Raman, X‐ray absorption spectroscopy, fs optical pump‐probe, electron paramagnetic resonance (EPR), diffuse reflectance and electric conductivity measurements and were modeled by band structure calculations. It is shown that under reaction conditions, Fe III and Ru III oxidation states are present, indicating rate‐limiting electron transfer in MOF. Fe 3 O nodes emerge as photosensitizers able to drive prolonged O 2 evolution in acid. Further developments are possible via MOF's linker modification for enhanced light absorption, electrical conductivity, reduced MOF solubility in acid, Ru‐WOC modification for faster WOC catalysis, or Ru‐WOC substitution to 3d metal‐based systems. The findings give further insight for development of light‐driven water splitting systems based on Earth‐abundant metals.},
doi = {10.1002/cssc.202202124},
journal = {ChemSusChem},
number = 5,
volume = 16,
place = {Germany},
year = {Mon Jan 09 00:00:00 EST 2023},
month = {Mon Jan 09 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/cssc.202202124

Save / Share:

Works referenced in this record:

Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
journal, January 2017

  • Roger, Isolda; Shipman, Michael A.; Symes, Mark D.
  • Nature Reviews Chemistry, Vol. 1, Issue 1
  • DOI: 10.1038/s41570-016-0003

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Metal–organic frameworks for photocatalysis
journal, January 2016

  • Li, Ying; Xu, Hua; Ouyang, Shuxin
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 11
  • DOI: 10.1039/C5CP05885F

Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges
journal, January 2014

  • Nasalevich, M. A.; van der Veen, M.; Kapteijn, F.
  • CrystEngComm, Vol. 16, Issue 23
  • DOI: 10.1039/C4CE00032C

α-Fe 2 O 3 as a photocatalytic material: A review
journal, June 2015


Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting
journal, January 2017


Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore–Catalyst Assembly
journal, December 2016


An Amine-Functionalized Iron(III) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction
journal, February 2015


Solvent-Free Photoreduction of CO 2 to CO Catalyzed by Fe-MOFs with Superior Selectivity
journal, June 2019


Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis
journal, March 2013

  • Yang, Jinhui; Wang, Donge; Han, Hongxian
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300227e

Using Predefined M 33 -O) Clusters as Building Blocks for an Isostructural Series of Metal–Organic Frameworks
journal, July 2017

  • Peng, Li; Asgari, Mehrdad; Mieville, Pascal
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 28
  • DOI: 10.1021/acsami.7b06041

Electron Transfer Mediator Effects in the Oxidative Activation of a Ruthenium Dicarboxylate Water Oxidation Catalyst
journal, June 2015


Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery
journal, May 2008

  • Horcajada, Patricia; Serre, Christian; Maurin, Guillaume
  • Journal of the American Chemical Society, Vol. 130, Issue 21
  • DOI: 10.1021/ja710973k

Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H 2 and O 2 under Visible Light Irradiation
journal, October 2004

  • Kato, Hideki; Hori, Mikihiro; Konta, Ryoko
  • Chemistry Letters, Vol. 33, Issue 10
  • DOI: 10.1246/cl.2004.1348

Electrically Conductive Metal–Organic Frameworks
journal, April 2020


Iron(III)-Based Metal–Organic Frameworks As Visible Light Photocatalysts
journal, September 2013

  • Laurier, Katrien G. M.; Vermoortele, Frederik; Ameloot, Rob
  • Journal of the American Chemical Society, Vol. 135, Issue 39
  • DOI: 10.1021/ja405086e

Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


Concentration Dependent Dimensionality of Resonance Energy Transfer in a Postsynthetically Doped Morphologically Homologous Analogue of UiO-67 MOF with a Ruthenium(II) Polypyridyl Complex
journal, June 2015

  • Maza, William A.; Padilla, Roberto; Morris, Amanda J.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b03071

Band gap modulation of functionalized metal–organic frameworks
journal, January 2014

  • Musho, Terence; Li, Jiangtan; Wu, Nianqiang
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 43
  • DOI: 10.1039/C4CP03110E

Design of Fe-MOF-bpdc deposited with cobalt oxide (CoOx) nanoparticles for enhanced visible-light-promoted water oxidation reaction
journal, January 2020

  • Mine, Shinya; Lionet, Zakary; Shigemitsu, Haruka
  • Research on Chemical Intermediates, Vol. 46, Issue 3
  • DOI: 10.1007/s11164-019-04077-8

Developments and Perspectives in 3d Transition‐Metal‐Based Electrocatalysts for Neutral and Near‐Neutral Water Electrolysis
journal, November 2019

  • Anantharaj, Sengeni; Aravindan, Vanchiappan
  • Advanced Energy Materials, Vol. 10, Issue 1
  • DOI: 10.1002/aenm.201902666

Ultrafast Primary Processes in Photosystem I of the Cyanobacterium Synechocystis sp. PCC 6803
journal, June 1999


Density-functional theory and NiO photoemission spectra
journal, December 1993


Pseudopotentials periodic table: From H to Pu
journal, December 2014


Photophysical Characterization of a Ruthenium(II) Tris(2,2′-bipyridine)-Doped Zirconium UiO-67 Metal–Organic Framework
journal, April 2014

  • Maza, William A.; Morris, Amanda J.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 17
  • DOI: 10.1021/jp501140r

Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity
journal, April 2018


Assessing the performance of recent density functionals for bulk solids
journal, April 2009


Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film
journal, January 2017

  • Johnson, Ben A.; Bhunia, Asamanjoy; Ott, Sascha
  • Dalton Transactions, Vol. 46, Issue 5
  • DOI: 10.1039/C6DT03718F

Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal–organic frameworks
journal, January 2016

  • Horiuchi, Yu; Toyao, Takashi; Miyahara, Kenta
  • Chemical Communications, Vol. 52, Issue 29
  • DOI: 10.1039/C6CC00730A

Iron-Based Metal-Organic Frameworks as Catalysts for Visible Light-Driven Water Oxidation
journal, January 2016


Postsynthetic Metalation of Bipyridyl-Containing Metal–Organic Frameworks for Highly Efficient Catalytic Organic Transformations
journal, April 2014

  • Manna, Kuntal; Zhang, Teng; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja5018267

Electronic origins of photocatalytic activity in d0 metal organic frameworks
journal, March 2016

  • Nasalevich, Maxim A.; Hendon, Christopher H.; Santaclara, Jara G.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23676

Hubbard parameters from density-functional perturbation theory
journal, August 2018


Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting
journal, October 2017


Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host−Guest Interactions
journal, January 2010

  • Devic, Thomas; Horcajada, Patricia; Serre, Christian
  • Journal of the American Chemical Society, Vol. 132, Issue 3
  • DOI: 10.1021/ja9092715

Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
journal, January 2015

  • Wang, Wei; Tadé, Moses O.; Shao, Zongping
  • Chemical Society Reviews, Vol. 44, Issue 15
  • DOI: 10.1039/C5CS00113G

Structure-dependent iron-based metal–organic frameworks for selective CO2-to-CH4photocatalytic reduction
journal, January 2020

  • Dao, Xiao-Yao; Guo, Jin-Han; Zhang, Xiao-Yu
  • Journal of Materials Chemistry A, Vol. 8, Issue 48
  • DOI: 10.1039/D0TA10278D

Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations
journal, February 2016

  • Zhang, Teng; Manna, Kuntal; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.6b00849

Electrochemical Water Oxidation in Acidic Solution Using Titanium Diboride (TiB 2 ) Catalyst
journal, January 2019

  • Kirshenbaum, Maxine J.; Richter, Matthias H.; Dasog, Mita
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201801736

Integration of accessible secondary metal sites into MOFs for H 2 S removal
journal, January 2014

  • Nickerl, Georg; Leistner, Matthias; Helten, Stella
  • Inorg. Chem. Front., Vol. 1, Issue 4
  • DOI: 10.1039/C3QI00093A

Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II
journal, April 2019

  • Wang, Degao; Sampaio, Renato N.; Troian-Gautier, Ludovic
  • Journal of the American Chemical Society, Vol. 141, Issue 19
  • DOI: 10.1021/jacs.9b02548

Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Two Electrode Collector–Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O 2
journal, July 2016

  • Sherman, Benjamin D.; Sheridan, Matthew V.; Dares, Christopher J.
  • Analytical Chemistry, Vol. 88, Issue 14
  • DOI: 10.1021/acs.analchem.6b00738

Insight into Metal-Organic Framework Reactivity: Chemical Water Oxidation Catalyzed by a [Ru(tpy)(dcbpy)(OH 2 )] 2+ -Modified UiO-67
journal, January 2018


Construction of Interpenetrated Ruthenium Metal–Organic Frameworks as Stable Photocatalysts for CO 2 Reduction
journal, August 2015


Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis
journal, February 2018


Suppressing Photoinduced Charge Recombination via the Lorentz Force in a Photocatalytic System
journal, July 2019


Design of molecular water oxidation catalysts with earth-abundant metal ions
journal, January 2021

  • Kondo, Mio; Tatewaki, Hayato; Masaoka, Shigeyuki
  • Chemical Society Reviews, Vol. 50, Issue 12
  • DOI: 10.1039/D0CS01442G

Long-Lived Photoinduced Charge Separation in a Trinuclear Iron-μ 3 -oxo-based Metal–Organic Framework
journal, June 2017

  • Hanna, Lauren; Kucheryavy, Pavel; Liu, Cunming
  • The Journal of Physical Chemistry C, Vol. 121, Issue 25
  • DOI: 10.1021/acs.jpcc.7b03936

Controlled partial interpenetration in metal–organic frameworks
journal, January 2016

  • Ferguson, Alan; Liu, Lujia; Tapperwijn, Stefanus J.
  • Nature Chemistry, Vol. 8, Issue 3
  • DOI: 10.1038/nchem.2430

Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials
journal, August 2013

  • Wang, Cheng; Liu, Demin; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja308229p

The First One-Pot Synthesis of Metal-Organic Frameworks Functionalised with Two Transition-Metal Complexes
journal, November 2014

  • Platero-Prats, Ana E.; Bermejo Gómez, Antonio; Samain, Louise
  • Chemistry - A European Journal, Vol. 21, Issue 2
  • DOI: 10.1002/chem.201403909

Molecular Catalysts for Water Oxidation
journal, July 2015


Photochemical Hydrogen Production with Metal–Organic Frameworks
journal, August 2016


The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation
journal, May 2017

  • Spöri, Camillo; Kwan, Jason Tai Hong; Bonakdarpour, Arman
  • Angewandte Chemie International Edition, Vol. 56, Issue 22
  • DOI: 10.1002/anie.201608601

Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization
journal, August 2017


Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis
journal, August 2011

  • Wang, Cheng; Xie, Zhigang; deKrafft, Kathryn E.
  • Journal of the American Chemical Society, Vol. 133, Issue 34, p. 13445-13454
  • DOI: 10.1021/ja203564w

TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting
journal, January 2015


Iron Containing Metal–Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation
journal, June 2017

  • Liu, Xiaocheng; Zhou, Yaoyu; Zhang, Jiachao
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 24
  • DOI: 10.1021/acsami.7b02563

All-in-One Derivatized Tandem p + n-Silicon–SnO 2 /TiO 2 Water Splitting Photoelectrochemical Cell
journal, March 2017


Covalent immobilization of molecular complexes on metal-organic frameworks towards robust and highly efficient heterogeneous water oxidation catalysts
journal, August 2021


Heterogeneous photocatalytic cleavage of water
journal, January 2010

  • Kitano, Masaaki; Hara, Michikazu
  • J. Mater. Chem., Vol. 20, Issue 4
  • DOI: 10.1039/B910180B

Photoinduced dynamics in an exchange-coupled trinuclear iron cluster
journal, May 2020


C-, N-, S-, and Fe-Doped TiO 2 and SrTiO 3 Nanotubes for Visible-Light-Driven Photocatalytic Water Splitting: Prediction from First Principles
journal, July 2015

  • Piskunov, Sergei; Lisovski, Oleg; Begens, Jevgenijs
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b03691

Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges
journal, March 2017


Photocharged BiVO 4 photoanodes for improved solar water splitting
journal, January 2016

  • Trześniewski, Bartek J.; Smith, Wilson A.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA04716A

Direct Water Splitting under Visible Light with Nanostructured Hematite and WO[sub 3] Photoanodes and a GaInP[sub 2] Photocathode
journal, January 2008

  • Wang, Heli; Deutsch, Todd; Turner, John A.
  • Journal of The Electrochemical Society, Vol. 155, Issue 5
  • DOI: 10.1149/1.2888477

Spectroscopic characterization of metal ligation in trinuclear iron-μ 3 -oxo-based complexes and metal-organic frameworks
journal, May 2019

  • Hanna, Lauren; Kucheryavy, Pavel; Lahanas, Nicole
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5096796

Characterization of the Fe V =O Complex in the Pathway of Water Oxidation
journal, May 2020

  • Ezhov, Roman; Ravari, Alireza Karbakhsh; Pushkar, Yulia
  • Angewandte Chemie International Edition, Vol. 59, Issue 32
  • DOI: 10.1002/anie.202003278

The photo-, electro- and photoelectro-catalytic properties and application prospects of porous coordinate polymers
journal, January 2018

  • Zhu, Haolin; Liu, Dingxin; Zou, Dianting
  • Journal of Materials Chemistry A, Vol. 6, Issue 15
  • DOI: 10.1039/C8TA00494C

Development of a Ru complex-incorporated MOF photocatalyst for hydrogen production under visible-light irradiation
journal, January 2014

  • Toyao, Takashi; Saito, Masakazu; Dohshi, Satoru
  • Chemical Communications, Vol. 50, Issue 51
  • DOI: 10.1039/c4cc02397h

A new isoreticular class of metal-organic-frameworks with the MIL-88 topology
journal, January 2006

  • Surblé, Suzy; Serre, Christian; Mellot-Draznieks, Caroline
  • Chemical Communications, Vol. 0, Issue 3, p. 284-286
  • DOI: 10.1039/B512169H

Single-Crystal-to-Single-Crystal Metalation of a Metal–Organic Framework: A Route toward Structurally Well-Defined Catalysts
journal, February 2015


Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation
journal, April 2019

  • Bara, Dominic; Wilson, Claire; Mörtel, Max
  • Journal of the American Chemical Society, Vol. 141, Issue 20
  • DOI: 10.1021/jacs.9b03269

Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion – from semiconducting TiO2 to MOF/PCP photocatalysts
journal, January 2013

  • Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 32
  • DOI: 10.1039/c3cp51427g

Understanding metal–organic frameworks for photocatalytic solar fuel production
journal, January 2017

  • Santaclara, J. G.; Kapteijn, F.; Gascon, J.
  • CrystEngComm, Vol. 19, Issue 29
  • DOI: 10.1039/C7CE00006E

Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal–Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study
journal, November 2012

  • Wang, Cheng; Wang, Jin-Liang; Lin, Wenbin
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja310074j

Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis
journal, July 2017


Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks
journal, January 2018

  • Marshall, Ross J.; Lennon, Ciaran T.; Tao, Andi
  • Journal of Materials Chemistry A, Vol. 6, Issue 3
  • DOI: 10.1039/C7TA09699B

Photoanodes based on TiO 2 and α-Fe 2 O 3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures
journal, January 2017

  • Kment, Stepan; Riboni, Francesca; Pausova, Sarka
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00015K

Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements
journal, January 2018

  • Dolgopolova, Ekaterina A.; Rice, Allison M.; Martin, Corey R.
  • Chemical Society Reviews, Vol. 47, Issue 13
  • DOI: 10.1039/C7CS00861A

Brønsted Acidity in Metal–Organic Frameworks
journal, June 2015


Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation
journal, January 2016

  • Lawrence, M. C.; Schneider, C.; Katz, M. J.
  • Chemical Communications, Vol. 52, Issue 28
  • DOI: 10.1039/C5CC09919F

Water Oxidation Catalyst cis- [Ru(bpy)(5,5′-dcbpy)(H 2 O) 2 ] 2+ and Its Stabilization in Metal–Organic Framework
journal, April 2020


How Linker’s Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88
journal, November 2011

  • Horcajada, Patricia; Salles, Fabrice; Wuttke, Stefan
  • Journal of the American Chemical Society, Vol. 133, Issue 44
  • DOI: 10.1021/ja206936e

Metal Insertion in a Microporous Metal−Organic Framework Lined with 2,2′-Bipyridine
journal, October 2010

  • Bloch, Eric D.; Britt, David; Lee, Chain
  • Journal of the American Chemical Society, Vol. 132, Issue 41, p. 14382-14384
  • DOI: 10.1021/ja106935d

Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks
journal, September 2011

  • Cohen, Seth M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 970-1000
  • DOI: 10.1021/cr200179u

Strongly visible light-absorbing metal–organic frameworks functionalized by cyclometalated ruthenium( ii ) complexes
journal, January 2020

  • Thoresen, Eirik Mydske; Øien-Ødegaard, Sigurd; Kaur, Gurpreet
  • RSC Advances, Vol. 10, Issue 15
  • DOI: 10.1039/C9RA06984D

Catalysis and photocatalysis by metal organic frameworks
journal, January 2018

  • Dhakshinamoorthy, Amarajothi; Li, Zhaohui; Garcia, Hermenegildo
  • Chemical Society Reviews, Vol. 47, Issue 22
  • DOI: 10.1039/C8CS00256H

Doping of TiO2 as a tool to optimize the water splitting efficiencies of titania–hematite photoanodes
journal, January 2017

  • Primc, Darinka; Bärtsch, Mario; Barreca, Davide
  • Sustainable Energy & Fuels, Vol. 1, Issue 1
  • DOI: 10.1039/C7SE00005G

Metal–Organic Frameworks for Light Harvesting and Photocatalysis
journal, November 2012

  • Wang, Jin-Liang; Wang, Cheng; Lin, Wenbin
  • ACS Catalysis, Vol. 2, Issue 12
  • DOI: 10.1021/cs3005874

Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis
journal, December 2018


How Interpenetration Ensures Rigidity and Permanent Porosity in a Highly Flexible Hybrid Solid
journal, June 2012

  • Dan-Hardi, Meenakshi; Chevreau, Hubert; Devic, Thomas
  • Chemistry of Materials, Vol. 24, Issue 13
  • DOI: 10.1021/cm300450x

Efficient hydrogenation of alkenes using a highly active and reusable immobilised Ru complex on AlPO4
journal, August 2009

  • Caballero, Veronica; Bautista, Felipa M.; Campelo, Juan Manuel
  • Journal of Molecular Catalysis A: Chemical, Vol. 308, Issue 1-2
  • DOI: 10.1016/j.molcata.2009.03.024

A robust, catalytic metal–organic framework with open 2,2′-bipyridine sites
journal, January 2014


Water oxidation electrocatalysis in acidic media with Co-containing polyoxometalates
journal, September 2020


Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline
journal, January 2006


Recent Progress in Electrocatalysts for Acidic Water Oxidation
journal, April 2020

  • Lei, Zhanwu; Wang, Tanyuan; Zhao, Bote
  • Advanced Energy Materials, Vol. 10, Issue 23
  • DOI: 10.1002/aenm.202000478

Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film
journal, December 2016

  • Lin, Shaoyang; Pineda-Galvan, Yuliana; Maza, William A.
  • ChemSusChem, Vol. 10, Issue 3
  • DOI: 10.1002/cssc.201601181

Enhanced Photocatalytic Water Splitting on Very Thin WO3Films Activated by High-Temperature Annealing
journal, October 2018

  • Jelinska, Aldona; Bienkowski, Krzysztof; Jadwiszczak, Michal
  • ACS Catalysis, Vol. 8, Issue 11
  • DOI: 10.1021/acscatal.8b03497

Photocatalytic metal–organic frameworks for the aerobic oxidation of arylboronic acids
journal, January 2015

  • Yu, Xiao; Cohen, Seth M.
  • Chemical Communications, Vol. 51, Issue 48
  • DOI: 10.1039/C5CC01697E

Atomically Dispersed Iridium on Indium Tin Oxide Efficiently Catalyzes Water Oxidation
journal, July 2020


Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting
journal, March 2020


WO3 photocatalysts: Influence of structure and composition
journal, October 2012


The Postsynthetic Renaissance in Porous Solids
journal, February 2017

  • Cohen, Seth M.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.6b11259

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Insight into Water Oxidation by Mononuclear Polypyridyl Ru Catalysts
journal, March 2010

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Koivisto, Bryan D.
  • Inorganic Chemistry, Vol. 49, Issue 5
  • DOI: 10.1021/ic902024s

Advanced capabilities for materials modelling with Quantum ESPRESSO
journal, October 2017

  • Giannozzi, P.; Andreussi, O.; Brumme, T.
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 46
  • DOI: 10.1088/1361-648X/aa8f79

Characterization of the Fe V =O Complex in the Pathway of Water Oxidation
journal, May 2020

  • Ezhov, Roman; Ravari, Alireza Karbakhsh; Pushkar, Yulia
  • Angewandte Chemie, Vol. 132, Issue 32
  • DOI: 10.1002/ange.202003278