DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: All-in-One Derivatized Tandem p+n-Silicon–SnO2/TiO2 Water Splitting Photoelectrochemical Cell

Abstract

Mesoporous metal oxide film electrodes consisting of derivatized 5.5 μm thick SnO2 films with an outer 4.3 nm shell of TiO2 added by atomic layer deposition (ALD) have been investigated to explore unbiased water splitting on p, n, and p+n type silicon substrates. Modified electrodes were derivatized by addition of the water oxidation catalyst, [Ru(bda)(4-O(CH2)3PO3H2)-pyr)2], 1, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate), and chromophore, [Ru(4,4'-PO3H2-bpy) (bpy)2]2+, RuP2+, (bpy = 2,2'-bipyridine), which form 2:1 RuP2+/1 assemblies on the surface. At pH 5.7 in 0.1 M acetate buffer, these electrodes with a fluorine-doped tin oxide (FTO) back contact under ~1 sun illumination (100 mW/cm2; white light source) perform efficient water oxidation with a photocurrent of 1.5 mA/cm2 with an 88% Faradaic efficiency (FE) for O2 production at an applied bias of 600 mV versus RHE ( ACS Energy Lett., 2016, 1, 231-236). The SnO2/TiO2–chromophore–catalyst assembly was integrated with the Si electrodes by a thin layer of titanium followed by an amorphous TiO2 (Ti/a-TiO2) coating as an interconnect. In the integrated electrode, p+n-Si–Ti/a-TiO2–SnO2/TiO2|-2RuP2+/1, the p+n-Si junction provided about 350 mV in added potential to the half cell. In photolysis experiments at pH 5.7 in 0.1 M acetate buffer, bias-free photocurrents approaching 100 μA/cm2more » were obtained for water splitting, 2H2O → 2H2 + O2. The FE for water oxidation was 79% with a hydrogen efficiency of ~100% at the Pt cathode.« less

Authors:
 [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1388357
Grant/Contract Number:  
SC0001011
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 4; Related Information: UNC partners with University of North Carolina (lead); Duke University; University of Florida; Georgia Institute of Technology; University; North Carolina Central University; Research Triangle Institute; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); solar (photovoltaic); solar (fuels); photosynthesis (natural and artificial); hydrogen and fuel cells; electrodes - solar; charge transport; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

Sheridan, Matthew V., Hill, David J., Sherman, Benjamin D., Wang, Degao, Marquard, Seth L., Wee, Kyung-Ryang, Cahoon, James F., and Meyer, Thomas J. All-in-One Derivatized Tandem p+n-Silicon–SnO2/TiO2 Water Splitting Photoelectrochemical Cell. United States: N. p., 2017. Web. doi:10.1021/acs.nanolett.7b00105.
Sheridan, Matthew V., Hill, David J., Sherman, Benjamin D., Wang, Degao, Marquard, Seth L., Wee, Kyung-Ryang, Cahoon, James F., & Meyer, Thomas J. All-in-One Derivatized Tandem p+n-Silicon–SnO2/TiO2 Water Splitting Photoelectrochemical Cell. United States. https://doi.org/10.1021/acs.nanolett.7b00105
Sheridan, Matthew V., Hill, David J., Sherman, Benjamin D., Wang, Degao, Marquard, Seth L., Wee, Kyung-Ryang, Cahoon, James F., and Meyer, Thomas J. Mon . "All-in-One Derivatized Tandem p+n-Silicon–SnO2/TiO2 Water Splitting Photoelectrochemical Cell". United States. https://doi.org/10.1021/acs.nanolett.7b00105. https://www.osti.gov/servlets/purl/1388357.
@article{osti_1388357,
title = {All-in-One Derivatized Tandem p+n-Silicon–SnO2/TiO2 Water Splitting Photoelectrochemical Cell},
author = {Sheridan, Matthew V. and Hill, David J. and Sherman, Benjamin D. and Wang, Degao and Marquard, Seth L. and Wee, Kyung-Ryang and Cahoon, James F. and Meyer, Thomas J.},
abstractNote = {Mesoporous metal oxide film electrodes consisting of derivatized 5.5 μm thick SnO2 films with an outer 4.3 nm shell of TiO2 added by atomic layer deposition (ALD) have been investigated to explore unbiased water splitting on p, n, and p+n type silicon substrates. Modified electrodes were derivatized by addition of the water oxidation catalyst, [Ru(bda)(4-O(CH2)3PO3H2)-pyr)2], 1, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate), and chromophore, [Ru(4,4'-PO3H2-bpy) (bpy)2]2+, RuP2+, (bpy = 2,2'-bipyridine), which form 2:1 RuP2+/1 assemblies on the surface. At pH 5.7 in 0.1 M acetate buffer, these electrodes with a fluorine-doped tin oxide (FTO) back contact under ~1 sun illumination (100 mW/cm2; white light source) perform efficient water oxidation with a photocurrent of 1.5 mA/cm2 with an 88% Faradaic efficiency (FE) for O2 production at an applied bias of 600 mV versus RHE ( ACS Energy Lett., 2016, 1, 231-236). The SnO2/TiO2–chromophore–catalyst assembly was integrated with the Si electrodes by a thin layer of titanium followed by an amorphous TiO2 (Ti/a-TiO2) coating as an interconnect. In the integrated electrode, p+n-Si–Ti/a-TiO2–SnO2/TiO2|-2RuP2+/1, the p+n-Si junction provided about 350 mV in added potential to the half cell. In photolysis experiments at pH 5.7 in 0.1 M acetate buffer, bias-free photocurrents approaching 100 μA/cm2 were obtained for water splitting, 2H2O → 2H2 + O2. The FE for water oxidation was 79% with a hydrogen efficiency of ~100% at the Pt cathode.},
doi = {10.1021/acs.nanolett.7b00105},
journal = {Nano Letters},
number = 4,
volume = 17,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enabling Silicon for Solar-Fuel Production
journal, January 2014

  • Sun, Ke; Shen, Shaohua; Liang, Yongqi
  • Chemical Reviews, Vol. 114, Issue 17
  • DOI: 10.1021/cr300459q

p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation
journal, July 2015

  • Chen, Le; Yang, Jinhui; Klaus, Shannon
  • Journal of the American Chemical Society, Vol. 137, Issue 30
  • DOI: 10.1021/jacs.5b03536

Stable Solar-Driven Water Oxidation to O 2 (g) by Ni-Oxide-Coated Silicon Photoanodes
journal, January 2015

  • Sun, Ke; McDowell, Matthew T.; Nielander, Adam C.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 4
  • DOI: 10.1021/jz5026195

High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting
journal, December 2015


Protected Light-Trapping Silicon by a Simple Structuring Process for Sunlight-Assisted Water Splitting
journal, September 2016

  • Santinacci, Lionel; Diouf, Maïmouna W.; Barr, Maïssa K. S.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 37
  • DOI: 10.1021/acsami.6b07350

Three-Dimensional High-Density Hierarchical Nanowire Architecture for High-Performance Photoelectrochemical Electrodes
journal, August 2011

  • Shi, Jian; Hara, Yukihiro; Sun, Chengliang
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201823u

A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
journal, May 2013

  • Liu, Chong; Tang, Jinyao; Chen, Hao Ming
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl401615t

Stabilized and Improved Photoelectrochemical Responses of Silicon Nanowires Modified with Ag@SiO 2 Nanoparticles and Crystallized TiO 2 Film
journal, October 2016

  • Gao, Xiang; Wu, Shaolong; Yan, Jimu
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 44
  • DOI: 10.1021/acsami.6b06912

Charge Recombination Dynamics in Sensitized SnO 2 /TiO 2 Core/Shell Photoanodes
journal, December 2015

  • Knauf, Robin R.; Kalanyan, Berç; Parsons, Gregory N.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 51
  • DOI: 10.1021/acs.jpcc.5b10574

Ultrafast Electron Injection Dynamics of Photoanodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells
journal, March 2016

  • Swierk, John R.; McCool, Nicholas S.; Nemes, Coleen T.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 11
  • DOI: 10.1021/acs.jpcc.6b00749

Light-Driven Water Splitting with a Molecular Electroassembly-Based Core/Shell Photoanode
journal, July 2015

  • Sherman, Benjamin D.; Ashford, Dennis L.; Lapides, Alexander M.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 16
  • DOI: 10.1021/acs.jpclett.5b01370

Isolating the Photovoltaic Junction: Atomic Layer Deposited TiO 2 –RuO 2 Alloy Schottky Contacts for Silicon Photoanodes
journal, August 2016

  • Hendricks, Olivia L.; Scheuermann, Andrew G.; Schmidt, Michael
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 36
  • DOI: 10.1021/acsami.6b08558

Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO 2 /Si Heterojunctions
journal, January 2016

  • Hu, Shu; Richter, Matthias H.; Lichterman, Michael F.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 6
  • DOI: 10.1021/acs.jpcc.5b09121

The Influence of Structure and Processing on the Behavior of TiO 2 Protective Layers for Stabilization of n-Si/TiO 2 /Ni Photoanodes for Water Oxidation
journal, July 2015

  • McDowell, Matthew T.; Lichterman, Michael F.; Carim, Azhar I.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 28
  • DOI: 10.1021/acsami.5b00379

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation
journal, October 2016

  • Yao, Tingting; Chen, Ruotian; Li, Junjie
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b07188

Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
journal, October 2016

  • Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13237

Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency
journal, January 2016

  • Kwon, Jeong; Im, Min Ji; Kim, Chan Ul
  • Energy & Environmental Science, Vol. 9, Issue 12
  • DOI: 10.1039/C6EE02296K

Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications
journal, August 2015


Electron Transfer Mediator Effects in Water Oxidation Catalysis by Solution and Surface-Bound Ruthenium Bpy-Dicarboxylate Complexes
journal, October 2015

  • Sheridan, Matthew V.; Sherman, Benjamin D.; Marquard, Seth L.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 45
  • DOI: 10.1021/acs.jpcc.5b08326

Evaluation of Chromophore and Assembly Design in Light-Driven Water Splitting with a Molecular Water Oxidation Catalyst
journal, June 2016


A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Artificial photosynthesis – functional devices for light driven water splitting with photoactive anodes based on molecular catalysts
journal, January 2014

  • Gao, Yan; Zhang, Linlin; Ding, Xin
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 24
  • DOI: 10.1039/c3cp55204g

Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex
journal, April 2015

  • Song, Na; Concepcion, Javier J.; Binstead, Robert A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1500245112

Varying the Electronic Structure of Surface-Bound Ruthenium(II) Polypyridyl Complexes
journal, December 2014

  • Ashford, Dennis L.; Brennaman, M. Kyle; Brown, Robert J.
  • Inorganic Chemistry, Vol. 54, Issue 2
  • DOI: 10.1021/ic501682k

Two Electrode Collector–Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O 2
journal, July 2016

  • Sherman, Benjamin D.; Sheridan, Matthew V.; Dares, Christopher J.
  • Analytical Chemistry, Vol. 88, Issue 14
  • DOI: 10.1021/acs.analchem.6b00738

Electro-assembly of a Chromophore-Catalyst Bilayer for Water Oxidation and Photocatalytic Water Splitting
journal, February 2015

  • Ashford, Dennis L.; Sherman, Benjamin D.; Binstead, Robert A.
  • Angewandte Chemie International Edition, Vol. 54, Issue 16
  • DOI: 10.1002/anie.201410944

A Quantitative Investigation of the Open-Circuit Photovoltage at the Semiconductor/Liquid Interface
journal, January 1984

  • Lewis, Nathan S.
  • Journal of The Electrochemical Society, Vol. 131, Issue 11
  • DOI: 10.1149/1.2115347

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering
journal, January 2013

  • Nunzi, Francesca; Mosconi, Edoardo; Storchi, Loriano
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee24100a

Analysis of Homogeneous Water Oxidation Catalysis with Collector–Generator Cells
journal, November 2015


A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water
journal, December 2016

  • Sherman, Benjamin D.; Sheridan, Matthew V.; Wee, Kyung-Ryang
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b10699

Works referencing / citing this record:

Potassium Hydroxide Mixed with Lithium Hydroxide: An Advanced Electrolyte for Oxygen Evolution Reaction
journal, July 2019


Band bending and valence band shifting of sub-monolayer TiO2 functionalized SnO2 nanowires
journal, November 2019

  • Wang, Hong-Bo; Ma, Fei; Sun, Yang-Shuo
  • Journal of Materials Science: Materials in Electronics, Vol. 31, Issue 1
  • DOI: 10.1007/s10854-019-02569-2

A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation
journal, September 2019

  • Wang, Degao; Niu, Fujun; Mortelliti, Michael J.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 23
  • DOI: 10.1073/pnas.1821687116

Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide
journal, November 2017


Photostable 3D heterojunction photoanode made of ZnO nanosheets coated onto TiO 2 nanowire arrays for photoelectrochemical solar hydrogen generation
journal, January 2019

  • Han, Hongsong; Wang, Wenzhong; Yao, Lizhen
  • Catalysis Science & Technology, Vol. 9, Issue 8
  • DOI: 10.1039/c9cy00119k

Core–shell structured titanium dioxide nanomaterials for solar energy utilization
journal, January 2018

  • Li, Wei; Elzatahry, Ahmed; Aldhayan, Dhaifallah
  • Chemical Society Reviews, Vol. 47, Issue 22
  • DOI: 10.1039/c8cs00443a

Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies
journal, January 2018

  • Hennessey, Seán; Farràs, Pau
  • Chemical Communications, Vol. 54, Issue 50
  • DOI: 10.1039/c8cc02487a

Scalable Triple Cation Mixed Halide Perovskite-BiVO 4 Tandems for Bias-Free Water Splitting
journal, July 2018

  • Andrei, Virgil; Hoye, Robert L. Z.; Crespo-Quesada, Micaela
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201801403

Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications
journal, January 2020

  • Li, Jian; Gao, Xin; Zhu, Lei
  • Energy & Environmental Science, Vol. 13, Issue 5
  • DOI: 10.1039/c9ee03558c

Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review
journal, November 2018


Light-driven water oxidation by a dye-sensitized photoanode with a chromophore/catalyst assembly on a mesoporous double-shell electrode
journal, January 2019

  • Liu, Qing; Wang, Degao; Shan, Bing
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5048780

Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power
journal, October 2018

  • Segev, Gideon; Beeman, Jeffrey W.; Greenblatt, Jeffery B.
  • Nature Materials, Vol. 17, Issue 12
  • DOI: 10.1038/s41563-018-0198-y

Hierarchical CdMoO 4 nanowire–graphene composite for photocatalytic hydrogen generation under natural sunlight
journal, January 2018

  • Kadam, Sunil R.; Panmand, Rajendra P.; Tekale, Shashikant
  • RSC Advances, Vol. 8, Issue 25
  • DOI: 10.1039/c8ra01557k