DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries

Abstract

The relationship between structure and performance in alkaline Zn batteries is undeniable, where anode utilization, dendrite formation, shape change, and passivation issues are all addressable through anode morphology. While tailoring 3D hosts can improve the electrode performance, these practices are inherently limited by scaffolds that increase the mass or volume. Herein, a direct write strategy for producing template‐free metallic 3D Zn electrode architectures is discussed. Concentrated inks are customized to build designs with low electrical resistivity (5 × 10 −4  Ω cm), submillimeter sizes (200 μm filaments), and high mechanical stability (Young's modulus of 0.1–0.5 GPa at relative densities of 0.28–0.46). A printed Zn lattice anode versus NiOOH cathode with an alkaline polymer gel electrolyte is then demonstrated. This Zn||NiOOH cell operates for over 650 cycles at high rates of 25 mA cm −2 with an average areal capacity of 11.89 mAh cm −2 , a cumulative capacity of 7.8 Ah cm −2 , and a volumetric capacity of 23.78 mAh cm −3 . A thicker Zn anode achieves an ultrahigh areal capacity of 85.45 mAh cm −2 and a volumetric capacity of 81.45 mAh cm −3 without significant microstructural changes after 50 cycles.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [3];  [1];  [5];  [6];  [3]; ORCiD logo [4]
  1. Engineering Directorate Lawrence Livermore National Laboratory Livermore CA 94550 USA
  2. Department of Power Sources R&,D Sandia National Laboratories Albuquerque NM 87123 USA
  3. Physics and Life Science Directorate Lawrence Livermore National Laboratory Livermore CA 94550 USA
  4. Department of Photovoltaics and Materials Technology Sandia National Laboratories Albuquerque NM 87123 USA
  5. Department of Chemical Engineering The CUNY Energy Institute City College of New York New York NY 10031 USA
  6. Nanoscale Sciences Department Sandia National Laboratories Albuquerque NM 87123 USA
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Electricity (OE); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC)
OSTI Identifier:
1905166
Alternate Identifier(s):
OSTI ID: 1905168; OSTI ID: 2204103
Report Number(s):
LLNL-JRNL-835018
Journal ID: ISSN 2688-4062; 2200323
Grant/Contract Number:  
AC52-07NA27344; NA-0003525; NA0003525
Resource Type:
Published Article
Journal Name:
Small Structures
Additional Journal Information:
Journal Name: Small Structures Journal Volume: 4 Journal Issue: 4; Journal ID: ISSN 2688-4062
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; direct ink writing; polymer gel electrolytes; Zn||NiOOH alkaline batteries; 3D-printed Zn anodes

Citation Formats

Zhu, Cheng, Schorr, Noah B., Qi, Zhen, Wygant, Bryan R., Turney, Damon E., Yadav, Gautam G., Worsley, Marcus A., Duoss, Eric B., Banerjee, Sanjoy, Spoerke, Erik D., van Buuren, Anthony, and Lambert, Timothy N. Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries. Germany: N. p., 2022. Web. doi:10.1002/sstr.202200323.
Zhu, Cheng, Schorr, Noah B., Qi, Zhen, Wygant, Bryan R., Turney, Damon E., Yadav, Gautam G., Worsley, Marcus A., Duoss, Eric B., Banerjee, Sanjoy, Spoerke, Erik D., van Buuren, Anthony, & Lambert, Timothy N. Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries. Germany. https://doi.org/10.1002/sstr.202200323
Zhu, Cheng, Schorr, Noah B., Qi, Zhen, Wygant, Bryan R., Turney, Damon E., Yadav, Gautam G., Worsley, Marcus A., Duoss, Eric B., Banerjee, Sanjoy, Spoerke, Erik D., van Buuren, Anthony, and Lambert, Timothy N. Thu . "Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries". Germany. https://doi.org/10.1002/sstr.202200323.
@article{osti_1905166,
title = {Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries},
author = {Zhu, Cheng and Schorr, Noah B. and Qi, Zhen and Wygant, Bryan R. and Turney, Damon E. and Yadav, Gautam G. and Worsley, Marcus A. and Duoss, Eric B. and Banerjee, Sanjoy and Spoerke, Erik D. and van Buuren, Anthony and Lambert, Timothy N.},
abstractNote = {The relationship between structure and performance in alkaline Zn batteries is undeniable, where anode utilization, dendrite formation, shape change, and passivation issues are all addressable through anode morphology. While tailoring 3D hosts can improve the electrode performance, these practices are inherently limited by scaffolds that increase the mass or volume. Herein, a direct write strategy for producing template‐free metallic 3D Zn electrode architectures is discussed. Concentrated inks are customized to build designs with low electrical resistivity (5 × 10 −4  Ω cm), submillimeter sizes (200 μm filaments), and high mechanical stability (Young's modulus of 0.1–0.5 GPa at relative densities of 0.28–0.46). A printed Zn lattice anode versus NiOOH cathode with an alkaline polymer gel electrolyte is then demonstrated. This Zn||NiOOH cell operates for over 650 cycles at high rates of 25 mA cm −2 with an average areal capacity of 11.89 mAh cm −2 , a cumulative capacity of 7.8 Ah cm −2 , and a volumetric capacity of 23.78 mAh cm −3 . A thicker Zn anode achieves an ultrahigh areal capacity of 85.45 mAh cm −2 and a volumetric capacity of 81.45 mAh cm −3 without significant microstructural changes after 50 cycles.},
doi = {10.1002/sstr.202200323},
journal = {Small Structures},
number = 4,
volume = 4,
place = {Germany},
year = {Thu Dec 15 00:00:00 EST 2022},
month = {Thu Dec 15 00:00:00 EST 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/sstr.202200323

Save / Share:

Works referenced in this record:

Monolithic Nanoporous Zn Anode for Rechargeable Alkaline Batteries
journal, February 2020


Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries
journal, June 2019


Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage and load leveling
journal, February 2015


Three-Dimensional Microbatteries beyond Lithium Ion
journal, June 2020


Robust 3D Zn Sponges Enable High-Power, Energy-Dense Alkaline Batteries
journal, December 2018

  • Ko, Jesse S.; Geltmacher, Andrew B.; Hopkins, Brandon J.
  • ACS Applied Energy Materials, Vol. 2, Issue 1
  • DOI: 10.1021/acsaem.8b01946

Fabricating architected zinc electrodes with unprecedented volumetric capacity in rechargeable alkaline cells
journal, May 2020

  • Hopkins, Brandon J.; Sassin, Megan B.; Chervin, Christopher N.
  • Energy Storage Materials, Vol. 27
  • DOI: 10.1016/j.ensm.2020.02.005

Additively manufactured biodegradable porous metals
journal, October 2020


Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores
journal, January 2016


Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling
journal, January 2014

  • Parker, Joseph F.; Chervin, Christopher N.; Nelson, Eric S.
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43754J

3D printed high-performance sodium ion and zinc ion full batteries
journal, April 2022


Hyper-dendritic nanoporous zinc foam anodes
journal, April 2015

  • Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya
  • NPG Asia Materials, Vol. 7, Issue 4
  • DOI: 10.1038/am.2015.32

3D‐Printed Multi‐Channel Metal Lattices Enabling Localized Electric‐Field Redistribution for Dendrite‐Free Aqueous Zn Ion Batteries
journal, March 2021

  • Zhang, Guanhua; Zhang, Xianan; Liu, Huaizhi
  • Advanced Energy Materials, Vol. 11, Issue 19
  • DOI: 10.1002/aenm.202003927

Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite‐free Zinc Ion Batteries
journal, June 2021

  • Cao, Jin; Zhang, Dongdong; Gu, Chao
  • Advanced Energy Materials, Vol. 11, Issue 29
  • DOI: 10.1002/aenm.202101299

3D Printing of Interdigitated Li-Ion Microbattery Architectures
journal, June 2013

  • Sun, Ke; Wei, Teng-Sing; Ahn, Bok Yeop
  • Advanced Materials, Vol. 25, Issue 33, p. 4539-4543
  • DOI: 10.1002/adma.201301036

Effect of ZnO-Saturated Electrolyte on Rechargeable Alkaline Zinc Batteries at Increased Depth-of-Discharge
journal, January 2020

  • Lim, Matthew B.; Lambert, Timothy N.; Ruiz, Elijah I.
  • Journal of The Electrochemical Society, Vol. 167, Issue 6
  • DOI: 10.1149/1945-7111/ab7e90

Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn–MnO2 Batteries for Use in Solar Microgrids
journal, January 2022

  • Cho, Jungsang; Yadav, Gautam Ganapati; Weiner, Meir
  • Polymers, Vol. 14, Issue 3
  • DOI: 10.3390/polym14030417

3D Printing of Customized Li-Ion Batteries with Thick Electrodes
journal, March 2018

  • Wei, Teng-Sing; Ahn, Bok Yeop; Grotto, Julia
  • Advanced Materials, Vol. 30, Issue 16
  • DOI: 10.1002/adma.201703027

Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries
journal, May 2022


Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage
journal, May 2017


Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
journal, April 2016


Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion
journal, April 2017

  • Parker, Joseph F.; Chervin, Christopher N.; Pala, Irina R.
  • Science, Vol. 356, Issue 6336
  • DOI: 10.1126/science.aak9991

Achieving Both High Voltage and High Capacity in Aqueous Zinc‐Ion Battery for Record High Energy Density
journal, September 2019

  • Ma, Longtao; Li, Na; Long, Changbai
  • Advanced Functional Materials, Vol. 29, Issue 46
  • DOI: 10.1002/adfm.201906142

Issues and opportunities facing aqueous zinc-ion batteries
journal, January 2019

  • Tang, Boya; Shan, Lutong; Liang, Shuquan
  • Energy & Environmental Science, Vol. 12, Issue 11
  • DOI: 10.1039/C9EE02526J

Roadmap on the protective strategies of zinc anodes in aqueous electrolyte
journal, January 2022


3D Printing Architecting Reservoir‐Integrated Anode for Dendrite‐Free, Safe, and Durable Zn Batteries
journal, February 2022


3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries
journal, January 2019


A Lasagna-Inspired Nanoscale ZnO Anode Design for High-Energy Rechargeable Aqueous Batteries
journal, October 2018

  • Yan, Yu; Zhang, Yamin; Wu, Yutong
  • ACS Applied Energy Materials, Vol. 1, Issue 11
  • DOI: 10.1021/acsaem.8b01321

Deeply Rechargeable and Hydrogen-Evolution-Suppressing Zinc Anode in Alkaline Aqueous Electrolyte
journal, May 2020


Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode
journal, September 2019


3D printed functional nanomaterials for electrochemical energy storage
journal, August 2017


Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication
journal, May 2011

  • Zhu, Cheng; Smay, James E.
  • Journal of Rheology, Vol. 55, Issue 3
  • DOI: 10.1122/1.3573828

Retaining the 3D Framework of Zinc Sponge Anodes upon Deep Discharge in Zn–Air Cells
journal, October 2014

  • Parker, Joseph F.; Nelson, Eric S.; Wattendorf, Matthew D.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 22
  • DOI: 10.1021/am505266c

Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading
journal, February 2019


Recent Advances in Aqueous Zinc-Ion Batteries
journal, September 2018


Interfacial Design of Dendrite‐Free Zinc Anodes for Aqueous Zinc‐Ion Batteries
journal, May 2020

  • Zhang, Qi; Luan, Jingyi; Tang, Yougen
  • Angewandte Chemie International Edition, Vol. 59, Issue 32
  • DOI: 10.1002/anie.202000162

Material Failure Mechanisms of Alkaline Zn Rechargeable Conversion Electrodes
journal, April 2021

  • D’Ambrose, Michael J.; Turney, Damon E.; Yadav, Gautam G.
  • ACS Applied Energy Materials, Vol. 4, Issue 4
  • DOI: 10.1021/acsaem.0c03144

High Depth‐of‐Discharge Zinc Rechargeability Enabled by a Self‐Assembled Polymeric Coating
journal, August 2021

  • Arnot, David J.; Lim, Matthew B.; Bell, Nelson S.
  • Advanced Energy Materials, Vol. 11, Issue 38
  • DOI: 10.1002/aenm.202101594

3D-printed functional electrodes towards Zn-Air batteries
journal, June 2020


Low-cost green synthesis of zinc sponge for rechargeable, sustainable batteries
journal, January 2020

  • Hopkins, Brandon J.; Chervin, Christopher N.; Sassin, Megan B.
  • Sustainable Energy & Fuels, Vol. 4, Issue 7
  • DOI: 10.1039/D0SE00562B

Cellular Solids
journal, April 2003


Realizing high zinc reversibility in rechargeable batteries
journal, August 2020


Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries
journal, January 2021


Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries
journal, January 2019

  • Huang, Meng; Li, Ming; Niu, Chaojiang
  • Advanced Functional Materials, Vol. 29, Issue 11
  • DOI: 10.1002/adfm.201807847

Dendrite‐Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn‐Ion Batteries
journal, June 2019


Microstructure and Mechanical Properties of Reticulated Titanium Scrolls
journal, August 2011

  • Hong, Eunji; Ahn, Bok Y.; Shoji, Daisuke
  • Advanced Engineering Materials, Vol. 13, Issue 12
  • DOI: 10.1002/adem.201100082

Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling
journal, February 2022

  • Hawkins, Brendan E.; Turney, Damon E.; Messinger, Robert J.
  • Advanced Energy Materials, Vol. 12, Issue 15
  • DOI: 10.1002/aenm.202103294

Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives
journal, December 2020


Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery
journal, February 2019


Translating Materials-Level Performance into Device-Relevant Metrics for Zinc-Based Batteries
journal, December 2018


Highly compressible 3D periodic graphene aerogel microlattices
journal, April 2015

  • Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7962

Advanced Filter Membrane Separator for Aqueous Zinc‐Ion Batteries
journal, September 2020


Direct Ink Writing of 3D Functional Materials
journal, November 2006


CNT@MnO 2 composite ink toward a flexible 3D printed micro‐zinc‐ion battery
journal, February 2022

  • Ren, Yujin; Meng, Fanbo; Zhang, Siwen
  • Carbon Energy, Vol. 4, Issue 3
  • DOI: 10.1002/cey2.177