DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes

Abstract

Transient Cu–H monomers have long been invoked in the mechanisms of substrate insertion in Cu–H catalysis. Their role from Cu–H aggregates has been mostly inferred since ligands to stabilize these monomeric intermediates for systematic studies remain limited. Within the last decade, new sterically demanding N-heterocyclic carbene (NHC) ligands have led to isolable Cu–H dimers and, in some cases, spectroscopic characterization of Cu–H monomers in solution. In this work, we report an NHC ligand, IPr*R, containing para R groups of CHPh2 and CPh3 on the ligand periphery for the isolation of a Cu–H monomer for insertion of internal alkenes. This reactivity has not been reported for (NHC)CuH complexes despite their common application in Cu–H-catalyzed hydrofunctionalization. Changing from CHPh2 to CPh3 impacts the relative concentration of Cu–H monomers, rate of alkene insertion, and reaction of a trisubstituted internal alkene. Specifically, for R = CPh3, monomeric (IPr*CPh3)CuH was isolated and provided >95% monomer (10 mM in C6D6). In contrast, for R = CHPh2, solutions of [(IPr*CHPh2)CuH]2 are 80% dimer and 20% (IPr*CHPh2)CuH monomer at 25 °C based on 1H, 13C, and 1H–13C HMBC NMR spectroscopy. Quantitative 1H NMR kinetic studies on cyclopentene insertion into Cu–H complexes to form the corresponding Cu–cyclopentyl complexes demonstratemore » a strong dependence on the rate of insertion and concentration of the Cu–H monomer. Only (IPr*CPh3)CuH, which has a high monomer concentration, underwent regioselective insertion of a trisubstituted internal alkene, 1-methylcyclopentene, to give (IPr*CPh3)Cu(2-methylcyclopentyl), which has been crystallographically characterized. We also demonstrated that (IPr*CPh3)CuH catalyzes the hydroboration of cyclopentene and methylcyclopentene with pinacolborane.« less

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1887247
Report Number(s):
PNNL-SA-167662
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 144; Journal Issue: 30; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Cu-H monomer; Remote steric effects; Internal alkenes; Hydride transfer; Hydrocarbons; Ligands; Monomers; Nuclear magnetic resonance spectroscopy; Oligomers

Citation Formats

Carroll, Timothy G., Ryan, David E., Erickson, Jeremy D., Bullock, Ronald Morris, and Tran, Ba L. Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes. United States: N. p., 2022. Web. doi:10.1021/jacs.2c05376.
Carroll, Timothy G., Ryan, David E., Erickson, Jeremy D., Bullock, Ronald Morris, & Tran, Ba L. Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes. United States. https://doi.org/10.1021/jacs.2c05376
Carroll, Timothy G., Ryan, David E., Erickson, Jeremy D., Bullock, Ronald Morris, and Tran, Ba L. Tue . "Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes". United States. https://doi.org/10.1021/jacs.2c05376. https://www.osti.gov/servlets/purl/1887247.
@article{osti_1887247,
title = {Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes},
author = {Carroll, Timothy G. and Ryan, David E. and Erickson, Jeremy D. and Bullock, Ronald Morris and Tran, Ba L.},
abstractNote = {Transient Cu–H monomers have long been invoked in the mechanisms of substrate insertion in Cu–H catalysis. Their role from Cu–H aggregates has been mostly inferred since ligands to stabilize these monomeric intermediates for systematic studies remain limited. Within the last decade, new sterically demanding N-heterocyclic carbene (NHC) ligands have led to isolable Cu–H dimers and, in some cases, spectroscopic characterization of Cu–H monomers in solution. In this work, we report an NHC ligand, IPr*R, containing para R groups of CHPh2 and CPh3 on the ligand periphery for the isolation of a Cu–H monomer for insertion of internal alkenes. This reactivity has not been reported for (NHC)CuH complexes despite their common application in Cu–H-catalyzed hydrofunctionalization. Changing from CHPh2 to CPh3 impacts the relative concentration of Cu–H monomers, rate of alkene insertion, and reaction of a trisubstituted internal alkene. Specifically, for R = CPh3, monomeric (IPr*CPh3)CuH was isolated and provided >95% monomer (10 mM in C6D6). In contrast, for R = CHPh2, solutions of [(IPr*CHPh2)CuH]2 are 80% dimer and 20% (IPr*CHPh2)CuH monomer at 25 °C based on 1H, 13C, and 1H–13C HMBC NMR spectroscopy. Quantitative 1H NMR kinetic studies on cyclopentene insertion into Cu–H complexes to form the corresponding Cu–cyclopentyl complexes demonstrate a strong dependence on the rate of insertion and concentration of the Cu–H monomer. Only (IPr*CPh3)CuH, which has a high monomer concentration, underwent regioselective insertion of a trisubstituted internal alkene, 1-methylcyclopentene, to give (IPr*CPh3)Cu(2-methylcyclopentyl), which has been crystallographically characterized. We also demonstrated that (IPr*CPh3)CuH catalyzes the hydroboration of cyclopentene and methylcyclopentene with pinacolborane.},
doi = {10.1021/jacs.2c05376},
journal = {Journal of the American Chemical Society},
number = 30,
volume = 144,
place = {United States},
year = {Tue Jul 19 00:00:00 EDT 2022},
month = {Tue Jul 19 00:00:00 EDT 2022}
}

Works referenced in this record:

Applied Hydroformylation
journal, August 2012

  • Franke, Robert; Selent, Detlef; Börner, Armin
  • Chemical Reviews, Vol. 112, Issue 11
  • DOI: 10.1021/cr3001803

Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration
journal, April 2018


Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins
journal, June 2016


Towards the online computer-aided design of catalytic pockets
journal, September 2019


Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)copper(I) Hydride
journal, July 2004

  • Mankad, Neal P.; Laitar, David S.; Sadighi, Joseph P.
  • Organometallics, Vol. 23, Issue 14, p. 3369-3371
  • DOI: 10.1021/om0496380

Mononuclear Three-Coordinate Magnesium Complexes of a Highly Sterically Encumbered β-Diketiminate Ligand
journal, September 2014

  • Arrowsmith, Merle; Maitland, Brant; Kociok-Köhn, Gabriele
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic501638v

Synthesis of (E)-1,4-disilsesquioxylsubstituted but-1-en-3-ynes via platinum-catalyzed dimerization of ethynylsiloxysilsesquioxanes
journal, January 2019

  • Żak, Patrycja; Bołt, Małgorzata; Dudziec, Beata
  • Dalton Transactions, Vol. 48, Issue 8
  • DOI: 10.1039/c8dt05142a

Experimental and Computational Studies of the Copper Borate Complexes [(NHC)Cu(HBEt 3 )] and [(NHC)Cu(HB(C 6 F 5 ) 3 )]
journal, November 2016

  • Collins, Lee R.; Rajabi, Nasir A.; Macgregor, Stuart A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 50
  • DOI: 10.1002/anie.201608081

Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
journal, December 2015

  • Pirnot, Michael T.; Wang, Yi-Ming; Buchwald, Stephen L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 1
  • DOI: 10.1002/anie.201507594

Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes
journal, January 2016

  • Coombs, John R.; Morken, James P.
  • Angewandte Chemie International Edition, Vol. 55, Issue 8
  • DOI: 10.1002/anie.201507151

Recent Advances in Asymmetric Hydrogenation of Tetrasubstituted Olefins
journal, August 2017

  • Kraft, Stefan; Ryan, Kristen; Kargbo, Robert B.
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b07188

Late-Metal Catalysts for Ethylene Homo- and Copolymerization
journal, April 2000

  • Ittel, Steven D.; Johnson, Lynda K.; Brookhart, Maurice
  • Chemical Reviews, Vol. 100, Issue 4
  • DOI: 10.1021/cr9804644

Cryoscopic study of copper(I) hydride-phosphine complexes
journal, July 1969

  • Dilts, J. A.; Shriver, Duward F.
  • Journal of the American Chemical Society, Vol. 91, Issue 15
  • DOI: 10.1021/ja01043a013

An improved method for the computation of ligand steric effects based on solid angles
journal, January 2006

  • Guzei, Ilia A.; Wendt, Mark
  • Dalton Transactions, Issue 33
  • DOI: 10.1039/B605102B

Capturing the Monomeric (L)CuH in NHC‐Capped Cyclodextrin: Cavity‐Controlled Chemoselective Hydrosilylation of α,β‐Unsaturated Ketones
journal, March 2020

  • Xu, Guangcan; Leloux, Sébastien; Zhang, Pinglu
  • Angewandte Chemie International Edition, Vol. 59, Issue 19
  • DOI: 10.1002/anie.202001733

Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity
journal, June 2016


Recent advances in ruthenium-based olefin metathesis
journal, January 2018

  • Ogba, O. M.; Warner, N. C.; O’Leary, D. J.
  • Chemical Society Reviews, Vol. 47, Issue 12
  • DOI: 10.1039/c8cs00027a

High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes
journal, July 2012

  • Yu, Renyuan Pony; Darmon, Jonathan M.; Hoyt, Jordan M.
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs300358m

CuH-Catalyzed Reactions
journal, August 2008

  • Deutsch, Carl; Krause, Norbert; Lipshutz, Bruce H.
  • Chemical Reviews, Vol. 108, Issue 8
  • DOI: 10.1021/cr0684321

Catalytic asymmetric addition of an amine N–H bond across internal alkenes
journal, November 2020


Remote Substitution on N -Heterocyclic Carbenes Heightens the Catalytic Reactivity of Their Palladium Complexes
journal, October 2011

  • Dible, Benjamin R.; Cowley, Ryan E.; Holland, Patrick L.
  • Organometallics, Vol. 30, Issue 19
  • DOI: 10.1021/om200349y

Ligand–Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins
journal, November 2017

  • Lu, Gang; Liu, Richard Y.; Yang, Yang
  • Journal of the American Chemical Society, Vol. 139, Issue 46
  • DOI: 10.1021/jacs.7b07373

Reaction of copper(I) hydride with organocopper(I) compounds
journal, November 1969

  • Whitesides, George M.; San Filippo, Joseph; Stredronsky, Erwin R.
  • Journal of the American Chemical Society, Vol. 91, Issue 23
  • DOI: 10.1021/ja01051a093

Mechanistic Studies on the Insertion of Carbonyl Substrates into Cu‐H: Different Rate‐Limiting Steps as a Function of Electrophilicity
journal, March 2020

  • Tran, Ba L.; Neisen, Benjamin D.; Speelman, Amy L.
  • Angewandte Chemie International Edition, Vol. 59, Issue 22
  • DOI: 10.1002/anie.201916406

Advances in Non-Metallocene Olefin Polymerization Catalysis
journal, January 2003

  • Gibson, Vernon C.; Spitzmesser, Stefan K.
  • Chemical Reviews, Vol. 103, Issue 1
  • DOI: 10.1021/cr980461r

IPr# – highly hindered, broadly applicable N-heterocyclic carbenes
journal, January 2021

  • Zhao, Qun; Meng, Guangrong; Li, Guangchen
  • Chemical Science, Vol. 12, Issue 31
  • DOI: 10.1039/d1sc02619d

Iridium compounds in catalysis
journal, September 1979


Industrial applications of homogeneous catalysis. A review
journal, August 1978


Enantioselective CuH-Catalyzed Anti-Markovnikov Hydroamination of 1,1-Disubstituted Alkenes
journal, October 2014

  • Zhu, Shaolin; Buchwald, Stephen L.
  • Journal of the American Chemical Society, Vol. 136, Issue 45
  • DOI: 10.1021/ja509786v

Iridium-Catalyzed Asymmetric Hydrogenation of Olefins
journal, December 2007

  • Roseblade, Stephen J.; Pfaltz, Andreas
  • Accounts of Chemical Research, Vol. 40, Issue 12
  • DOI: 10.1021/ar700113g

Application of Trimethylgermanyl-Substituted Bisphosphine Ligands with Enhanced Dispersion Interactions to Copper-Catalyzed Hydroboration of Disubstituted Alkenes
journal, September 2020

  • Xi, Yumeng; Su, Bo; Qi, Xiaotian
  • Journal of the American Chemical Society, Vol. 142, Issue 42
  • DOI: 10.1021/jacs.0c08746

Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed Hydroamination Reactions
journal, September 2018

  • Thomas, Andy A.; Speck, Klaus; Kevlishvili, Ilia
  • Journal of the American Chemical Society, Vol. 140, Issue 42
  • DOI: 10.1021/jacs.8b09565

Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-type Catalysts: Scope and Limitations
journal, December 2013

  • Verendel, J. Johan; Pàmies, Oscar; Diéguez, Montserrat
  • Chemical Reviews, Vol. 114, Issue 4
  • DOI: 10.1021/cr400037u

Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects
journal, March 2017


Enantio- and Regioselective CuH-Catalyzed Hydroamination of Alkenes
journal, October 2013

  • Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L.
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja4092819

Soluble copper hydrides: solution behavior and reactions related to carbon monoxide hydrogenation
journal, December 1981

  • Goeden, Gary V.; Caulton, Kenneth G.
  • Journal of the American Chemical Society, Vol. 103, Issue 24
  • DOI: 10.1021/ja00414a062

Accelerating the insertion reactions of (NHC)Cu–H via remote ligand functionalization
journal, January 2021

  • Speelman, Amy L.; Tran, Ba L.; Erickson, Jeremy D.
  • Chemical Science, Vol. 12, Issue 34
  • DOI: 10.1039/d1sc01911b

Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species
journal, January 2014

  • Fujihara, Tetsuaki; Semba, Kazuhiko; Terao, Jun
  • Catalysis Science & Technology, Vol. 4, Issue 6
  • DOI: 10.1039/c4cy00070f

Selective hydride-mediated conjugate reduction of .alpha.,.beta.-unsaturated carbonyl compounds using [(Ph3P)CuH]6
journal, January 1988

  • Mahoney, Wayne S.; Brestensky, Donna M.; Stryker, Jeffrey M.
  • Journal of the American Chemical Society, Vol. 110, Issue 1
  • DOI: 10.1021/ja00209a048

A Masked Cuprous Hydride as a Catalyst for Carbonyl Hydrosilylation in Aqueous Solutions
journal, February 2019

  • Ritter, Florian; Mukherjee, Debabrata; Spaniol, Thomas P.
  • Angewandte Chemie International Edition, Vol. 58, Issue 6
  • DOI: 10.1002/anie.201811890

Olefin Metathesis at the Dawn of Implementation in Pharmaceutical and Specialty-Chemicals Manufacturing
journal, February 2016

  • Higman, Carolyn S.; Lummiss, Justin A. M.; Fogg, Deryn E.
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201506846

Air-Stable (CAAC)CuCl and (CAAC)CuBH 4 Complexes as Catalysts for the Hydrolytic Dehydrogenation of BH 3 NH 3
journal, March 2015

  • Hu, Xingbang; Soleilhavoup, Michèle; Melaimi, Mohand
  • Angewandte Chemie International Edition, Vol. 54, Issue 20
  • DOI: 10.1002/anie.201500224

Development of N-Heterocyclic Carbene–Copper Complexes for 1,3-Halogen Migration
journal, August 2015


CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition
journal, May 2020


Mechanism and Stereoselectivity of Asymmetric Hydrogenation
journal, July 1982


Iridium-Catalyzed, Intermolecular Hydroetherification of Unactivated Aliphatic Alkenes with Phenols
journal, June 2013

  • Sevov, Christo S.; Hartwig, John F.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja4052153

Diverse Asymmetric Hydrofunctionalization of Aliphatic Internal Alkenes through Catalytic Regioselective Hydroboration
journal, May 2016

  • Xi, Yumeng; Hartwig, John F.
  • Journal of the American Chemical Society, Vol. 138, Issue 21
  • DOI: 10.1021/jacs.6b02478

Spectroscopic Evidence for a Monomeric Copper(I) Hydride and Crystallographic Characterization of a Monomeric Silver(I) Hydride
journal, March 2017

  • Romero, Erik A.; Olsen, Pauline M.; Jazzar, Rodolphe
  • Angewandte Chemie International Edition, Vol. 56, Issue 14
  • DOI: 10.1002/anie.201700858

Catalytic Hydrogenation Activity and Electronic Structure Determination of Bis(arylimidazol-2-ylidene)pyridine Cobalt Alkyl and Hydride Complexes
journal, August 2013

  • Yu, Renyuan Pony; Darmon, Jonathan M.; Milsmann, Carsten
  • Journal of the American Chemical Society, Vol. 135, Issue 35
  • DOI: 10.1021/ja406608u

Rational design in homogeneous catalysis. Iridium(I)-catalyzed addition of aniline to norbornylene via nitrogen-hydrogen activation
journal, September 1988

  • Casalnuovo, Albert L.; Calabrese, Joseph C.; Milstein, David.
  • Journal of the American Chemical Society, Vol. 110, Issue 20
  • DOI: 10.1021/ja00228a022

Nature of soluble copper(I) hydride
journal, October 1968

  • Dilts, J. A.; Shriver, D. F.
  • Journal of the American Chemical Society, Vol. 90, Issue 21
  • DOI: 10.1021/ja01023a020

Evolution and Prospects of the Asymmetric Hydrogenation of Unfunctionalized Olefins
journal, January 2017

  • Margarita, Cristiana; Andersson, Pher G.
  • Journal of the American Chemical Society, Vol. 139, Issue 4
  • DOI: 10.1021/jacs.6b10690

Hydride-mediated homogeneous catalysis. Catalytic reduction of .alpha.,.beta.-unsaturated ketones using [(Ph3P)CuH]6 and H2
journal, November 1989

  • Mahoney, Wayne S.; Stryker, Jeffrey M.
  • Journal of the American Chemical Society, Vol. 111, Issue 24
  • DOI: 10.1021/ja00206a008

Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments
journal, January 2003

  • Blaser, Hans-Ulrich; Malan, Christophe; Pugin, Benoît
  • Advanced Synthesis & Catalysis, Vol. 345, Issue 12
  • DOI: 10.1002/adsc.200390000

Tandem copper hydride–Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen
journal, October 2018


Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines
journal, July 2015


Remarkably Facile Borane-Promoted, Rhodium-Catalyzed Asymmetric Hydrogenation of Tri- and Tetrasubstituted Alkenes
journal, April 2017

  • Shoba, Veronika M.; Takacs, James M.
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b02581

Hydride Transfer Reactions Catalyzed by Cobalt Complexes
journal, October 2018


Access to the most sterically crowded anilines via non-catalysed C–C coupling reactions
journal, January 2020

  • Vrána, Jan; Samsonov, Maksim A.; Němec, Vlastimil
  • Chemical Communications, Vol. 56, Issue 16
  • DOI: 10.1039/c9cc09497k

Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands
journal, May 2015