DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica

Abstract

Subglacial hydrology is a leading control on basal friction and the dynamics of glaciers and ice sheets. At low discharge, subglacial water flows through high-pressure, sheet-like systems that lead to low effective pressures. However, at high discharge, subglacial water melts the overlying ice into localized channels that efficiently remove water from the bed, thereby increasing effective pressure and basal friction. Recent observations suggest channelized subglacial flow exists beneath Thwaites Glacier, yet it remains unclear if stable channelization is feasible in West Antarctica, where surface melting is nonexistent and water at the bed is limited. Here, we use the MPAS-Albany Land Ice model to run a suite of over 130 subglacial hydrology simulations of Thwaites Glacier across a wide range of physical parameter choices to assess the likelihood of channelization. We then narrow our range of viable simulations by comparing modeled water thicknesses to previously observed radar specularity content, which indicates flat, spatially extensive water bodies at the bed. In all of our data-compatible simulations, stable channels reliably form within 100–200 km of the grounding line and reach individual discharge rates of 35–110 m3 s-1 at the ice–ocean boundary. While only one to two channels typically form across the 200 kmmore » width of the glacier in our simulations, their high efficiency drains water across the entire lateral extent of the glacier. We posit the large catchment size of Thwaites Glacier, its funnel-like geometry, and high basal melt rates together accumulate enough water to form stable channels. No simulations resembled observed specularity content when channelization was disabled. Our results suggest channelized subglacial hydrology has two consequences for Thwaites Glacier dynamics: (i) amplifying submarine melting of the terminus and ice shelf while (ii) simultaneously raising effective pressure within 100 km of the grounding line and increasing basal friction. The distribution of effective pressure implied from our modeling differs from parameterizations typically used in large-scale ice sheet models, suggesting the development of more process-based parameterizations may be necessary.« less

Authors:
; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
OSTI Identifier:
1885203
Alternate Identifier(s):
OSTI ID: 1889995
Report Number(s):
LA-UR-22-29317
Journal ID: ISSN 1994-0424
Grant/Contract Number:  
AC52-06NA25396; AC02-05CH11231; 89233218CNA000001; 1543012
Resource Type:
Published Article
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Name: The Cryosphere (Online) Journal Volume: 16 Journal Issue: 9; Journal ID: ISSN 1994-0424
Publisher:
Copernicus GmbH
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Hager, Alexander O., Hoffman, Matthew J., Price, Stephen F., and Schroeder, Dustin M. Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica. Germany: N. p., 2022. Web. doi:10.5194/tc-16-3575-2022.
Hager, Alexander O., Hoffman, Matthew J., Price, Stephen F., & Schroeder, Dustin M. Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica. Germany. https://doi.org/10.5194/tc-16-3575-2022
Hager, Alexander O., Hoffman, Matthew J., Price, Stephen F., and Schroeder, Dustin M. Fri . "Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica". Germany. https://doi.org/10.5194/tc-16-3575-2022.
@article{osti_1885203,
title = {Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica},
author = {Hager, Alexander O. and Hoffman, Matthew J. and Price, Stephen F. and Schroeder, Dustin M.},
abstractNote = {Subglacial hydrology is a leading control on basal friction and the dynamics of glaciers and ice sheets. At low discharge, subglacial water flows through high-pressure, sheet-like systems that lead to low effective pressures. However, at high discharge, subglacial water melts the overlying ice into localized channels that efficiently remove water from the bed, thereby increasing effective pressure and basal friction. Recent observations suggest channelized subglacial flow exists beneath Thwaites Glacier, yet it remains unclear if stable channelization is feasible in West Antarctica, where surface melting is nonexistent and water at the bed is limited. Here, we use the MPAS-Albany Land Ice model to run a suite of over 130 subglacial hydrology simulations of Thwaites Glacier across a wide range of physical parameter choices to assess the likelihood of channelization. We then narrow our range of viable simulations by comparing modeled water thicknesses to previously observed radar specularity content, which indicates flat, spatially extensive water bodies at the bed. In all of our data-compatible simulations, stable channels reliably form within 100–200 km of the grounding line and reach individual discharge rates of 35–110 m3 s-1 at the ice–ocean boundary. While only one to two channels typically form across the 200 km width of the glacier in our simulations, their high efficiency drains water across the entire lateral extent of the glacier. We posit the large catchment size of Thwaites Glacier, its funnel-like geometry, and high basal melt rates together accumulate enough water to form stable channels. No simulations resembled observed specularity content when channelization was disabled. Our results suggest channelized subglacial hydrology has two consequences for Thwaites Glacier dynamics: (i) amplifying submarine melting of the terminus and ice shelf while (ii) simultaneously raising effective pressure within 100 km of the grounding line and increasing basal friction. The distribution of effective pressure implied from our modeling differs from parameterizations typically used in large-scale ice sheet models, suggesting the development of more process-based parameterizations may be necessary.},
doi = {10.5194/tc-16-3575-2022},
journal = {The Cryosphere (Online)},
number = 9,
volume = 16,
place = {Germany},
year = {Fri Sep 02 00:00:00 EDT 2022},
month = {Fri Sep 02 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/tc-16-3575-2022

Save / Share:

Works referenced in this record:

Totten Glacier subglacial hydrology determined from geophysics and modeling
journal, February 2020


Feedbacks between coupled subglacial hydrology and glacier dynamics
journal, March 2014

  • Hoffman, Matthew; Price, Stephen
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 3
  • DOI: 10.1002/2013JF002943

Subglacial swamps
journal, November 2014

  • Kyrke-Smith, T. M.; Fowler, A. C.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 470, Issue 2171
  • DOI: 10.1098/rspa.2014.0340

High-resolution boundary conditions of an old ice target near Dome C, Antarctica
journal, August 2017

  • Young, Duncan A.; Roberts, Jason L.; Ritz, Catherine
  • The Cryosphere, Vol. 11, Issue 4
  • DOI: 10.5194/tc-11-1897-2017

Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2
journal, January 2014


Determining the evolution of an alpine glacier drainage system by solving inverse problems
journal, January 2021

  • Irarrazaval, Inigo; Werder, Mauro A.; Huss, Matthias
  • Journal of Glaciology, Vol. 67, Issue 263
  • DOI: 10.1017/jog.2020.116

Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations
journal, January 1997


Extensive winter subglacial water storage beneath the Greenland Ice Sheet
journal, December 2016

  • Chu, Winnie; Schroeder, Dustin M.; Seroussi, Helene
  • Geophysical Research Letters, Vol. 43, Issue 24
  • DOI: 10.1002/2016GL071538

Constraining subglacial processes from surface velocity observations using surrogate-based Bayesian inference
journal, January 2021

  • Brinkerhoff, Douglas; Aschwanden, Andy; Fahnestock, Mark
  • Journal of Glaciology, Vol. 67, Issue 263
  • DOI: 10.1017/jog.2020.112

Glacier surge mechanism based on linked cavity configuration of the basal water conduit system
journal, January 1987


Four decades of Antarctic Ice Sheet mass balance from 1979–2017
journal, January 2019

  • Rignot, Eric; Mouginot, Jérémie; Scheuchl, Bernd
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 4
  • DOI: 10.1073/pnas.1812883116

Estimating Subglacial Water Geometry Using Radar Bed Echo Specularity: Application to Thwaites Glacier, West Antarctica
journal, March 2015

  • Schroeder, Dustin M.; Blankenship, Donald D.; Raney, R. Keith
  • IEEE Geoscience and Remote Sensing Letters, Vol. 12, Issue 3
  • DOI: 10.1109/LGRS.2014.2337878

Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet
journal, October 2013

  • Le Brocq, Anne M.; Ross, Neil; Griggs, Jennifer A.
  • Nature Geoscience, Vol. 6, Issue 11
  • DOI: 10.1038/ngeo1977

Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model
journal, January 2014

  • Leguy, G. R.; Asay-Davis, X. S.; Lipscomb, W. H.
  • The Cryosphere, Vol. 8, Issue 4
  • DOI: 10.5194/tc-8-1239-2014

Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line
journal, May 2017

  • Drews, R.; Pattyn, F.; Hewitt, I. J.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15228

Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers
journal, February 2013

  • Chandler, D. M.; Wadham, J. L.; Lis, G. P.
  • Nature Geoscience, Vol. 6, Issue 3
  • DOI: 10.1038/ngeo1737

Glacier Outburst Floods From “Hazard Lake”, Yukon Territory, and the Problem of Flood Magnitude Prediction
journal, January 1982


Modelling water flow under glaciers and ice sheets
journal, April 2015

  • Flowers, Gwenn E.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 471, Issue 2176
  • DOI: 10.1098/rspa.2014.0907

The effect of cavitation on glacier sliding
journal, March 2005

  • Schoof, Christian
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 461, Issue 2055
  • DOI: 10.1098/rspa.2004.1350

Geometric Constraints on Glacial Fjord–Shelf Exchange
journal, April 2021

  • Zhao, Ken X.; Stewart, Andrew L.; McWilliams, James C.
  • Journal of Physical Oceanography, Vol. 51, Issue 4
  • DOI: 10.1175/JPO-D-20-0091.1

Water Flow in Glaciers: Jökulhlaups, Tunnels and Veins
journal, January 1976


Flotation and free surface flow in a model for subglacial drainage. Part 1. Distributed drainage
journal, May 2012

  • Schoof, Christian; Hewitt, Ian J.; Werder, Mauro A.
  • Journal of Fluid Mechanics, Vol. 702
  • DOI: 10.1017/jfm.2012.165

Channelized subglacial drainage over a deformable bed
journal, January 1994


Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica
journal, February 2017

  • Smith, Benjamin E.; Gourmelen, Noel; Huth, Alexander
  • The Cryosphere, Vol. 11, Issue 1
  • DOI: 10.5194/tc-11-451-2017

Jökulhlaups in Iceland: prediction, characteristics and simulation
journal, January 1992


SHMIP The subglacial hydrology model intercomparison Project
journal, October 2018

  • De Fleurian, Basile; Werder, Mauro A.; Beyer, Sebastian
  • Journal of Glaciology, Vol. 64, Issue 248
  • DOI: 10.1017/jog.2018.78

Impact of Subglacial Freshwater Discharge on Pine Island Ice Shelf
journal, September 2021

  • Nakayama, Yoshihiro; Cai, Cilan; Seroussi, Helene
  • Geophysical Research Letters, Vol. 48, Issue 18
  • DOI: 10.1029/2021GL093923

Brief communication: Thwaites Glacier cavity evolution
journal, July 2021

  • Bevan, Suzanne L.; Luckman, Adrian J.; Benn, Douglas I.
  • The Cryosphere, Vol. 15, Issue 7
  • DOI: 10.5194/tc-15-3317-2021

Breaking the seal at Grímsvötn, Iceland
journal, January 1999


Pathways of ocean heat towards Pine Island and Thwaites grounding lines
journal, November 2019


The impact of jökulhlaups on basal sliding observed by SAR interferometry on Vatnajökull, Iceland
journal, January 2007

  • Magnússon, Eyjólfur; Rott, Helmut; Björnsson, Helgi
  • Journal of Glaciology, Vol. 53, Issue 181
  • DOI: 10.3189/172756507782202810

Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods
journal, November 2008

  • Stearns, Leigh A.; Smith, Benjamin E.; Hamilton, Gordon S.
  • Nature Geoscience, Vol. 1, Issue 12
  • DOI: 10.1038/ngeo356

The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
journal, January 2012


Convection-Driven Melting near the Grounding Lines of Ice Shelves and Tidewater Glaciers
journal, December 2011


Effect of Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites Glacier, Antarctica
journal, December 2019

  • Hoffman, Matthew J.; Asay‐Davis, Xylar; Price, Stephen F.
  • Journal of Geophysical Research: Earth Surface, Vol. 124, Issue 12
  • DOI: 10.1029/2019JF005155

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011
journal, May 2014

  • Rignot, E.; Mouginot, J.; Morlighem, M.
  • Geophysical Research Letters, Vol. 41, Issue 10
  • DOI: 10.1002/2014GL060140

A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples: MULTICOMPONENT HYDROLOGY, 1, THEORY
journal, November 2002

  • Flowers, Gwenn E.; Clarke, Garry K. C.
  • Journal of Geophysical Research: Solid Earth, Vol. 107, Issue B11
  • DOI: 10.1029/2001JB001122

High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica
journal, January 2016

  • Marsh, Oliver J.; Fricker, Helen A.; Siegfried, Matthew R.
  • Geophysical Research Letters, Vol. 43, Issue 1
  • DOI: 10.1002/2015GL066612

Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation: ICE-OCEAN MODELING OF THWAITES GLACIER
journal, June 2017

  • Seroussi, H.; Nakayama, Y.; Larour, E.
  • Geophysical Research Letters, Vol. 44, Issue 12
  • DOI: 10.1002/2017GL072910

Inversion of a glacier hydrology model
journal, May 2016

  • Brinkerhoff, Douglas J.; Meyer, Colin R.; Bueler, Ed
  • Annals of Glaciology, Vol. 57, Issue 72
  • DOI: 10.1017/aog.2016.3

Conduit roughness and dye-trace breakthrough curves: why slow velocity and high dispersivity may not reflect flow in distributed systems
journal, January 2012

  • Gulley, J. D.; Walthard, P.; Martin, J.
  • Journal of Glaciology, Vol. 58, Issue 211
  • DOI: 10.3189/2012JoG11J115

A subglacial water-flow model for West Antarctica
journal, January 2009


Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica
journal, October 2019

  • Muto, Atsuhiro; Alley, Richard B.; Parizek, Byron R.
  • Annals of Glaciology, Vol. 60, Issue 80
  • DOI: 10.1017/aog.2019.32

Ice-sheet acceleration driven by melt supply variability
journal, December 2010


Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet
journal, October 2017

  • Asay-Davis, Xylar S.; Jourdain, Nicolas C.; Nakayama, Yoshihiro
  • Current Climate Change Reports, Vol. 3, Issue 4
  • DOI: 10.1007/s40641-017-0071-0

Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet
journal, October 2014

  • Andrews, Lauren C.; Catania, Ginny A.; Hoffman, Matthew J.
  • Nature, Vol. 514, Issue 7520
  • DOI: 10.1038/nature13796

The hydrology of subglacial overdeepenings: A new supercooling threshold formula: HYDROLOGY OF OVERDEEPENINGS
journal, March 2016


The distribution of basal water between Antarctic subglacial lakes from radar sounding
journal, January 2016

  • Young, D. A.; Schroeder, D. M.; Blankenship, D. D.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2059
  • DOI: 10.1098/rsta.2014.0297

Sliding with Cavity Formation
journal, January 1987


Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6
journal, January 2015


Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier: THE FRICTION LAW UNDER PIG
journal, October 2016

  • Gillet-Chaulet, F.; Durand, G.; Gagliardini, O.
  • Geophysical Research Letters, Vol. 43, Issue 19
  • DOI: 10.1002/2016GL069937

Hydraulics of Subglacial Cavities
journal, January 1986


Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets
journal, November 2013


Water-Pressure Coupling of Sliding and Bed Deformation: I. Water System
journal, January 1989


Evidence for a water system transition beneath Thwaites Glacier, West Antarctica
journal, July 2013

  • Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 30
  • DOI: 10.1073/pnas.1302828110

Subglacial discharge-driven renewal of tidewater glacier fjords: SUBGLACIAL DISCHARGE-DRIVEN RENEWAL
journal, August 2017

  • Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.
  • Journal of Geophysical Research: Oceans, Vol. 122, Issue 8
  • DOI: 10.1002/2017JC012962

Modeling channelized and distributed subglacial drainage in two dimensions: A 2-D SUBGLACIAL DRAINAGE SYSTEM MODEL
journal, October 2013

  • Werder, Mauro A.; Hewitt, Ian J.; Schoof, Christian G.
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 4
  • DOI: 10.1002/jgrf.20146

Subglacial hydrology and the formation of ice streams
journal, January 2014

  • Kyrke-Smith, T. M.; Katz, R. F.; Fowler, A. C.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 470, Issue 2161
  • DOI: 10.1098/rspa.2013.0494

New Mass‐Conserving Bedrock Topography for Pine Island Glacier Impacts Simulated Decadal Rates of Mass Loss
journal, April 2018

  • Nias, I. J.; Cornford, S. L.; Payne, A. J.
  • Geophysical Research Letters, Vol. 45, Issue 7
  • DOI: 10.1002/2017GL076493

Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves
journal, August 2020

  • Adusumilli, Susheel; Fricker, Helen Amanda; Medley, Brooke
  • Nature Geoscience, Vol. 13, Issue 9
  • DOI: 10.1038/s41561-020-0616-z

Black-box modeling of the subglacial water system
journal, June 1995

  • Murray, Tavi; Clarke, Garry K. C.
  • Journal of Geophysical Research: Solid Earth, Vol. 100, Issue B6
  • DOI: 10.1029/95JB00671

Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
journal, January 2020

  • Cornford, Stephen L.; Seroussi, Helene; Asay-Davis, Xylar S.
  • The Cryosphere, Vol. 14, Issue 7
  • DOI: 10.5194/tc-14-2283-2020

Towards a Hydrological Model for Computerized Ice-Sheet Simulations
journal, April 1996


Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing
journal, September 2020

  • Hogan, Kelly A.; Larter, Robert D.; Graham, Alastair G. C.
  • The Cryosphere, Vol. 14, Issue 9
  • DOI: 10.5194/tc-14-2883-2020

Heat Flux Distribution of Antarctica Unveiled
journal, November 2017

  • Martos, Yasmina M.; Catalán, Manuel; Jordan, Tom A.
  • Geophysical Research Letters, Vol. 44, Issue 22
  • DOI: 10.1002/2017GL075609

Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica
journal, February 2019

  • Muto, Atsuhiro; Anandakrishnan, Sridhar; Alley, Richard B.
  • Earth and Planetary Science Letters, Vol. 507
  • DOI: 10.1016/j.epsl.2018.12.008

Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates: SLATER ET AL.
journal, April 2015

  • Slater, D. A.; Nienow, P. W.; Cowton, T. R.
  • Geophysical Research Letters, Vol. 42, Issue 8
  • DOI: 10.1002/2014GL062494

Water Pressure in Intra- and Subglacial Channels
journal, January 1972


Subglacial till: A physical framework for its properties and processes
journal, January 1987


Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets
journal, September 2009

  • Pritchard, Hamish D.; Arthern, Robert J.; Vaughan, David G.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08471

Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013
journal, March 2014

  • Mouginot, J.; Rignot, E.; Scheuchl, B.
  • Geophysical Research Letters, Vol. 41, Issue 5
  • DOI: 10.1002/2013GL059069

Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon
journal, January 2018


Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
journal, January 2016

  • Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël
  • Geoscientific Model Development, Vol. 9, Issue 7
  • DOI: 10.5194/gmd-9-2471-2016

Dynamic Hydraulic Conductivity Reconciles Mismatch Between Modeled and Observed Winter Subglacial Water Pressure
journal, April 2018

  • Downs, Jacob Z.; Johnson, Jesse V.; Harper, Joel T.
  • Journal of Geophysical Research: Earth Surface, Vol. 123, Issue 4
  • DOI: 10.1002/2017JF004522

Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica
journal, January 2019


Optimal initial conditions for coupling ice sheet models to Earth system models: PEREGO ET AL.
journal, September 2014

  • Perego, Mauro; Price, Stephen; Stadler, Georg
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 9
  • DOI: 10.1002/2014JF003181

An area-based nonparametric spatial point pattern test: The test, its applications, and the future
journal, January 2016


Incorporating modelled subglacial hydrology into inversions for basal drag
journal, December 2017


Dye tracing a jökulhlaup: II. Testing a jökulhlaup model against flow speeds inferred from measurements
journal, January 2009


Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data
journal, January 2009


Upper bounds on subglacial channel development for interior regions of the Greenland ice sheet
journal, January 2014

  • Dow, C. F.; Kulessa, B.; Rutt, I. C.
  • Journal of Glaciology, Vol. 60, Issue 224
  • DOI: 10.3189/2014JoG14J093

Geometric Power Fall-Off in Radar Sounding
journal, November 2018

  • Haynes, Mark S.; Chapin, Elaine; Schroeder, Dustin M.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, Issue 11
  • DOI: 10.1109/TGRS.2018.2840511

Basal Drainage System Response to Increasing Surface Melt on the Greenland Ice Sheet
journal, August 2013


Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability and Renewal of Ilulissat Icefjord Waters, 2001–14
journal, January 2015

  • Gladish, Carl V.; Holland, David M.; Rosing-Asvid, Aqqalu
  • Journal of Physical Oceanography, Vol. 45, Issue 1
  • DOI: 10.1175/JPO-D-14-0044.1

Water flow through temperate glaciers
journal, August 1998

  • Fountain, Andrew G.; Walder, Joseph S.
  • Reviews of Geophysics, Vol. 36, Issue 3
  • DOI: 10.1029/97RG03579

Greenland subglacial drainage evolution regulated by weakly connected regions of the bed
journal, December 2016

  • Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen F.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13903

Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains
journal, January 2017

  • Carter, Sasha P.; Fricker, Helen A.; Siegfried, Matthew R.
  • The Cryosphere, Vol. 11, Issue 1
  • DOI: 10.5194/tc-11-381-2017

Seasonal changes in ice sheet motion due to melt water lubrication
journal, June 2013


MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
journal, January 2018

  • Hoffman, Matthew J.; Perego, Mauro; Price, Stephen F.
  • Geoscientific Model Development, Vol. 11, Issue 9
  • DOI: 10.5194/gmd-11-3747-2018

Testing for similarity in area-based spatial patterns: A nonparametric Monte Carlo approach
journal, July 2009


Hydraulics of subglacial outburst floods: new insights from the Spring–Hutter formulation
journal, January 2003


Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet
journal, December 2019


Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica
journal, May 2014


Modelling distributed and channelized subglacial drainage: the spacing of channels
journal, January 2011


Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet
journal, April 2020

  • Wei, Wei; Blankenship, Donald D.; Greenbaum, Jamin S.
  • The Cryosphere, Vol. 14, Issue 4
  • DOI: 10.5194/tc-14-1399-2020

Seasonal reorganization of subglacial drainage inferred from measurements in boreholes
journal, January 1998


General theory of water flow at the base of a glacier or ice sheet
journal, January 1972


Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica
journal, January 2020

  • Holschuh, N.; Christianson, K.; Paden, J.
  • Geology, Vol. 48, Issue 3
  • DOI: 10.1130/G46772.1

Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
journal, January 2018