DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics of runaway electrons with shattered pellet injection at JET

Abstract

Runaway electrons (REs) created during tokamak disruptions pose a threat to the reliable operation of future larger machines. Experiments using shattered pellet injection (SPI) have been carried out at the JET tokamak to investigate ways to prevent their generation or suppress them if avoidance is not sufficient. Avoidance is possible if the SPI contains a sufficiently low fraction of high-Z material, or if it is fired early in advance of a disruption prone to runaway generation. These results are consistent with previous similar findings obtained with Massive Gas Injection. Suppression of an already accelerated beam is not efficient using High-Z material, but deuterium leads to harmless terminations without heat loads. This effect is due to the combination of a large magnetohydrodynamic instability scattering REs on a large area and the absence of runaway regeneration during the subsequent current collapse thanks to the flushing of high-Z impurities from the runaway companion plasma. This effect also works in situations where the runaway beam moves upwards and undergoes scraping-off on the wall.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [6];  [7]; ORCiD logo [8]; ORCiD logo [7];  [9];  [4];  [1];  [6];  [6]; ORCiD logo [10];  [6];  [11]; ORCiD logo [12]; ORCiD logo [11];  [13] more »;  [6]; ORCiD logo [14];  [15]; ORCiD logo [16]; ORCiD logo [1]; ORCiD logo [10];  [12]; ORCiD logo [17]; ;  [6]; ORCiD logo [8]; ; ORCiD logo [14];  [14]; ORCiD logo [7];  [7];  [18]; ORCiD logo [19];  [18];  [3];  [20]; ORCiD logo [12];  [1]; ORCiD logo [21];  [6]; ORCiD logo [21];  [6] « less
  1. CEA, IRFM, Saint Paul Lez Durance (France)
  2. General Atomics, San Diego, CA (United States); Columbia Univ., New York, NY (United States)
  3. General Atomics, San Diego, CA (United States)
  4. ITER Organization, St. Paul Lez Durance (France)
  5. Max Planck Institute for Plasma Physics, Greifswald (Germany)
  6. Culham Science Centre, Abingdon (United Kingdom). Culham Centre for Fusion Energy (CCFE)
  7. Max Planck Inst. fuer Plasmaphysik, Garching (Germany)
  8. Czech Academy of Sciences (CAS), Prague (Czech Republic). Institute of Plasma Physics
  9. Univ. of California, San Diego, CA (United States)
  10. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  11. Tor Vergata Univ. of Rome (Italy)
  12. Istituto per la Scienza e Tecnologia dei Plasmi (ISTP-CNR), Milan (Italy)
  13. Queen's Univ., Belfast, Northern Ireland (United Kingdom)
  14. University Milano-Bicocca, Milan (Italy)
  15. Research Centre for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Laboratorio Nacional de Fusion
  16. Consorzio CREATE, Napoli (Italy)
  17. Forschungszentrum Juelich (Germany)
  18. Russian Academy of Sciences (RAS), St. Petersburg (Russian Federation). Ioffe Physical-Technical Institute
  19. Univ. of Lisbon (Portugal)
  20. Ecole Polytechnique Federale Lausanne (Switzerland)
  21. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC); Euratom Research and Training Program
Contributing Org.:
JET Contributors
OSTI Identifier:
1870218
Grant/Contract Number:  
AC05-00OR22725; 633053
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 64; Journal Issue: 3; Conference: 47th EPS Conference on Plasma Physics, 21-25 June 2021; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Reux, Cedric, Paz-Soldan, C., Eidietis, N., Lehnen, M., Aleynikov, P., Silburn, S., Bandaru, V., Ficker, O., Hoelzl, M., Hollmann, E. M., Jachmich, S., Joffrin, E., Lomas, P. J., Rimini, F., Baylor, L., Bleasdale, A., Calacci, L., Causa, F., Carnevale, D., Coffey, I., Craven, D., Dal Molin, A., de la Luna, E., De Tommasi, G., Garcia, J., Gebhart, T., Giacomelli, L., Huber, A., Khilkevich, E., Lowry, C., Macusova, E., Manzanares, A., Nocente, M., Panontin, E., Papp, G., Pautasso, G., Peacock, A., Plyusnin, V., Shevelev, A., Shiraki, D., Sommariva, C., Sozzi, C., Sridhar, S., Sweeney, R., Szepesi, G., Tinguely, R. A., and Wilson, J. Physics of runaway electrons with shattered pellet injection at JET. United States: N. p., 2022. Web. doi:10.1088/1361-6587/ac48bc.
Reux, Cedric, Paz-Soldan, C., Eidietis, N., Lehnen, M., Aleynikov, P., Silburn, S., Bandaru, V., Ficker, O., Hoelzl, M., Hollmann, E. M., Jachmich, S., Joffrin, E., Lomas, P. J., Rimini, F., Baylor, L., Bleasdale, A., Calacci, L., Causa, F., Carnevale, D., Coffey, I., Craven, D., Dal Molin, A., de la Luna, E., De Tommasi, G., Garcia, J., Gebhart, T., Giacomelli, L., Huber, A., Khilkevich, E., Lowry, C., Macusova, E., Manzanares, A., Nocente, M., Panontin, E., Papp, G., Pautasso, G., Peacock, A., Plyusnin, V., Shevelev, A., Shiraki, D., Sommariva, C., Sozzi, C., Sridhar, S., Sweeney, R., Szepesi, G., Tinguely, R. A., & Wilson, J. Physics of runaway electrons with shattered pellet injection at JET. United States. https://doi.org/10.1088/1361-6587/ac48bc
Reux, Cedric, Paz-Soldan, C., Eidietis, N., Lehnen, M., Aleynikov, P., Silburn, S., Bandaru, V., Ficker, O., Hoelzl, M., Hollmann, E. M., Jachmich, S., Joffrin, E., Lomas, P. J., Rimini, F., Baylor, L., Bleasdale, A., Calacci, L., Causa, F., Carnevale, D., Coffey, I., Craven, D., Dal Molin, A., de la Luna, E., De Tommasi, G., Garcia, J., Gebhart, T., Giacomelli, L., Huber, A., Khilkevich, E., Lowry, C., Macusova, E., Manzanares, A., Nocente, M., Panontin, E., Papp, G., Pautasso, G., Peacock, A., Plyusnin, V., Shevelev, A., Shiraki, D., Sommariva, C., Sozzi, C., Sridhar, S., Sweeney, R., Szepesi, G., Tinguely, R. A., and Wilson, J. Wed . "Physics of runaway electrons with shattered pellet injection at JET". United States. https://doi.org/10.1088/1361-6587/ac48bc. https://www.osti.gov/servlets/purl/1870218.
@article{osti_1870218,
title = {Physics of runaway electrons with shattered pellet injection at JET},
author = {Reux, Cedric and Paz-Soldan, C. and Eidietis, N. and Lehnen, M. and Aleynikov, P. and Silburn, S. and Bandaru, V. and Ficker, O. and Hoelzl, M. and Hollmann, E. M. and Jachmich, S. and Joffrin, E. and Lomas, P. J. and Rimini, F. and Baylor, L. and Bleasdale, A. and Calacci, L. and Causa, F. and Carnevale, D. and Coffey, I. and Craven, D. and Dal Molin, A. and de la Luna, E. and De Tommasi, G. and Garcia, J. and Gebhart, T. and Giacomelli, L. and Huber, A. and Khilkevich, E. and Lowry, C. and Macusova, E. and Manzanares, A. and Nocente, M. and Panontin, E. and Papp, G. and Pautasso, G. and Peacock, A. and Plyusnin, V. and Shevelev, A. and Shiraki, D. and Sommariva, C. and Sozzi, C. and Sridhar, S. and Sweeney, R. and Szepesi, G. and Tinguely, R. A. and Wilson, J.},
abstractNote = {Runaway electrons (REs) created during tokamak disruptions pose a threat to the reliable operation of future larger machines. Experiments using shattered pellet injection (SPI) have been carried out at the JET tokamak to investigate ways to prevent their generation or suppress them if avoidance is not sufficient. Avoidance is possible if the SPI contains a sufficiently low fraction of high-Z material, or if it is fired early in advance of a disruption prone to runaway generation. These results are consistent with previous similar findings obtained with Massive Gas Injection. Suppression of an already accelerated beam is not efficient using High-Z material, but deuterium leads to harmless terminations without heat loads. This effect is due to the combination of a large magnetohydrodynamic instability scattering REs on a large area and the absence of runaway regeneration during the subsequent current collapse thanks to the flushing of high-Z impurities from the runaway companion plasma. This effect also works in situations where the runaway beam moves upwards and undergoes scraping-off on the wall.},
doi = {10.1088/1361-6587/ac48bc},
journal = {Plasma Physics and Controlled Fusion},
number = 3,
volume = 64,
place = {United States},
year = {Wed Feb 02 00:00:00 EST 2022},
month = {Wed Feb 02 00:00:00 EST 2022}
}

Works referenced in this record:

Runaway electron beam control
journal, November 2018

  • Carnevale, D.; Ariola, M.; Artaserse, G.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaef53

Study of argon assimilation into the post-disruption runaway electron plateau in DIII-D and comparison with a 1D diffusion model
journal, August 2019


Photoneutron Thresholds
journal, November 1951


Demonstration of Safe Termination of Megaampere Relativistic Electron Beams in Tokamaks
journal, April 2021


Runaway electron beam generation and mitigation during disruptions at JET-ILW
journal, August 2015


Neutron production in terrestrial gamma ray flashes: NEUTRON PRODUCTION IN TGFS
journal, April 2010

  • Carlson, B. E.; Lehtinen, N. G.; Inan, U. S.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A4
  • DOI: 10.1029/2009JA014696

Generation of runaway electrons during the thermal quench in tokamaks
journal, February 2017


Hot tail runaway electron generation in tokamak disruptions
journal, July 2008

  • Smith, H. M.; Verwichte, E.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2949692

Shattered pellet injection technology design and characterization for disruption mitigation experiments
journal, April 2019


Kink instabilities of the post-disruption runaway electron beam at low safety factor
journal, March 2019

  • Paz-Soldan, C.; Eidietis, N. W.; Liu, Y. Q.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 5
  • DOI: 10.1088/1361-6587/aafd15

Fast plasma dilution in ITER with pure deuterium shattered pellet injection
journal, October 2020


Study of argon expulsion from the post-disruption runaway electron plateau following low-Z massive gas injection in DIII-D
journal, April 2020

  • Hollmann, E. M.; Bykov, I.; Eidietis, N. W.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/5.0003299

SOFT: a synthetic synchrotron diagnostic for runaway electrons
journal, January 2018


Magnetohydrodynamic simulations of runaway electron beam termination in JET
journal, January 2021

  • Bandaru, V.; Hoelzl, M.; Reux, C.
  • Plasma Physics and Controlled Fusion, Vol. 63, Issue 3
  • DOI: 10.1088/1361-6587/abdbcf

Impact of a minority relativistic electron tail interacting with a thermal plasma containing high-atomic-number impurities
journal, April 2020

  • Garland, Nathan A.; Chung, Hyun-Kyung; Fontes, Christopher J.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/5.0003638

Theory for avalanche of runaway electrons in tokamaks
journal, October 1997


Mitigation of Tokamak Disruptions Using High-Pressure Gas Injection
journal, July 2002


Generation and dissipation of runaway electrons in ASDEX Upgrade experiments
journal, July 2020


Electron and Ion Runaway in a Fully Ionized Gas. I
journal, July 1959


Runaway electron experiments at COMPASS in support of the EUROfusion ITER physics research
journal, November 2018

  • Mlynar, J.; Ficker, O.; Macusova, E.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aae04a

Physics of runaway electrons in tokamaks
journal, June 2019

  • Breizman, Boris N.; Aleynikov, Pavel; Hollmann, Eric M.
  • Nuclear Fusion, Vol. 59, Issue 8
  • DOI: 10.1088/1741-4326/ab1822

Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
journal, March 2018