DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction

Abstract

Hydrogen energy derived from water splitting is the cleanest renewable energy source, but it is also very challenging to achieve because the hydrogen evolution reaction (HER) requires highly efficient and low-cost electrocatalysts. Here, we have fabricated a novel hierarchical system of amorphous molybdenum oxy/sulfide microspheres with crystalline Ni3S2 intergrown in situ on Ni foam (MoOxSy/Ni3S2/NF) as an outstanding electrocatalyst for HER. The MoOxSy/Ni3S2/NF demonstrates an ultra-low overpotential of 58 mV at a current density of 10 mA cm-2 and extremely durable stability (>200 h), suggesting superior performance comparable to that of Pt-C/NF under acidic conditions. The X-ray absorption fine structure (XAFS) determines the average valence state of Mo to be +(5 + δ), with a coordination motif by O and S. To explain such high HER activity, a [Mo2O2(S,O)4] dimer-based periodic model structure with the average composition of [Mo4O8S4] interfaced with the Ni3S2(101) surface is proposed. The interactions between the Ni of Ni3S2 and bridging S/O of [Mo4O8S4] result in an average formal Mo charge state between +5 and +6, and significant charge transfer from Ni3S2 to [Mo4O8S4] activates the Mo = O bonds. The calculated |ΔGH*| of less than 50 meV suggests that the double-bonded O is the mostmore » active site. This work points to the importance of oxy/sulfides with Mon+ (+5 < n < +6) as exceptional electrochemical catalysts for HER.« less

Authors:
 [1]; ORCiD logo [2];  [3];  [1];  [4]; ORCiD logo [5];  [6];  [1]; ORCiD logo [1]; ORCiD logo [7]; ORCiD logo [8]
  1. Beijing Normal University (China)
  2. Ningxia Medical Univ., Yinchuan (China)
  3. Beijing Normal University (China); Northwestern Univ., Evanston, IL (United States)
  4. Chinese Academy of Sciences (CAS), Shanghai (China)
  5. Valparaiso Univ., IN (United States)
  6. National Synchrotron Radiation Research Center, Hsinchu (Taiwan)
  7. Argonne National Lab. (ANL), Argonne, IL (United States)
  8. Northwestern Univ., Evanston, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Natural Science Foundation of China (NSFC); Ministry of Science and Technology, Taiwan
OSTI Identifier:
1868890
Grant/Contract Number:  
AC02-06CH11357; 22176017; U1832152; 11805261; 21665021; MOST 108-2113-M-213-006
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 34; Journal Issue: 2; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemical structure; Electrical energy; Electrical properties; Electrocatalysts; Evolution reactions

Citation Formats

Yu, Zihuan, Yao, Huiqin, Yang, Yan, Yuan, Mengwei, Li, Cheng, He, Haiying, Chan, Ting-Shan, Yan, Dongpeng, Ma, Shulan, Zapol, Peter, and Kanatzidis, Mercouri G. MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction. United States: N. p., 2022. Web. doi:10.1021/acs.chemmater.1c03682.
Yu, Zihuan, Yao, Huiqin, Yang, Yan, Yuan, Mengwei, Li, Cheng, He, Haiying, Chan, Ting-Shan, Yan, Dongpeng, Ma, Shulan, Zapol, Peter, & Kanatzidis, Mercouri G. MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction. United States. https://doi.org/10.1021/acs.chemmater.1c03682
Yu, Zihuan, Yao, Huiqin, Yang, Yan, Yuan, Mengwei, Li, Cheng, He, Haiying, Chan, Ting-Shan, Yan, Dongpeng, Ma, Shulan, Zapol, Peter, and Kanatzidis, Mercouri G. Tue . "MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction". United States. https://doi.org/10.1021/acs.chemmater.1c03682. https://www.osti.gov/servlets/purl/1868890.
@article{osti_1868890,
title = {MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction},
author = {Yu, Zihuan and Yao, Huiqin and Yang, Yan and Yuan, Mengwei and Li, Cheng and He, Haiying and Chan, Ting-Shan and Yan, Dongpeng and Ma, Shulan and Zapol, Peter and Kanatzidis, Mercouri G.},
abstractNote = {Hydrogen energy derived from water splitting is the cleanest renewable energy source, but it is also very challenging to achieve because the hydrogen evolution reaction (HER) requires highly efficient and low-cost electrocatalysts. Here, we have fabricated a novel hierarchical system of amorphous molybdenum oxy/sulfide microspheres with crystalline Ni3S2 intergrown in situ on Ni foam (MoOxSy/Ni3S2/NF) as an outstanding electrocatalyst for HER. The MoOxSy/Ni3S2/NF demonstrates an ultra-low overpotential of 58 mV at a current density of 10 mA cm-2 and extremely durable stability (>200 h), suggesting superior performance comparable to that of Pt-C/NF under acidic conditions. The X-ray absorption fine structure (XAFS) determines the average valence state of Mo to be +(5 + δ), with a coordination motif by O and S. To explain such high HER activity, a [Mo2O2(S,O)4] dimer-based periodic model structure with the average composition of [Mo4O8S4] interfaced with the Ni3S2(101) surface is proposed. The interactions between the Ni of Ni3S2 and bridging S/O of [Mo4O8S4] result in an average formal Mo charge state between +5 and +6, and significant charge transfer from Ni3S2 to [Mo4O8S4] activates the Mo = O bonds. The calculated |ΔGH*| of less than 50 meV suggests that the double-bonded O is the most active site. This work points to the importance of oxy/sulfides with Mon+ (+5 < n < +6) as exceptional electrochemical catalysts for HER.},
doi = {10.1021/acs.chemmater.1c03682},
journal = {Chemistry of Materials},
number = 2,
volume = 34,
place = {United States},
year = {Tue Jan 04 00:00:00 EST 2022},
month = {Tue Jan 04 00:00:00 EST 2022}
}

Works referenced in this record:

Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution
journal, June 2019


Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide
journal, March 2016

  • Tran, Phong D.; Tran, Thu V.; Orio, Maylis
  • Nature Materials, Vol. 15, Issue 6
  • DOI: 10.1038/nmat4588

Amorphous MoS x -Coated TiO 2 Nanotube Arrays for Enhanced Electrocatalytic Hydrogen Evolution Reaction
journal, June 2018

  • Liu, Zhongqing; Zhang, Xiaoming; Wang, Bin
  • The Journal of Physical Chemistry C, Vol. 122, Issue 24
  • DOI: 10.1021/acs.jpcc.8b01678

Amorphous Molybdenum Sulfide on Graphene–Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts
journal, February 2016

  • Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 9
  • DOI: 10.1021/acsami.5b09690

Determination of the Oxidation States of Cu and Ru in the System La2−xSrxCu1−yRuyO4−δ by XANES-Measurements
journal, January 2001

  • Ebbinghaus, Stefan; Hu, Zhiwei; Reller, Armin
  • Journal of Solid State Chemistry, Vol. 156, Issue 1
  • DOI: 10.1006/jssc.2000.8981

Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts
journal, November 2017


Structure of Amorphous MoS3
journal, June 1995

  • Weber, Th.; Muijsers, J. C.; Niemantsverdriet, J. W.
  • The Journal of Physical Chemistry, Vol. 99, Issue 22
  • DOI: 10.1021/j100022a037

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Core–Shell Structure of NiSe 2 Nanoparticles@Nitrogen-Doped Graphene for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media
journal, January 2019


Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium
journal, January 2016

  • Dinda, Diptiman; Ahmed, Md. Estak; Mandal, Sumit
  • Journal of Materials Chemistry A, Vol. 4, Issue 40
  • DOI: 10.1039/c6ta06101j

Highly Efficient Electrocatalytic Hydrogen Production by MoS x Grown on Graphene-Protected 3D Ni Foams
journal, October 2012

  • Chang, Yung-Huang; Lin, Cheng-Te; Chen, Tzu-Yin
  • Advanced Materials, Vol. 25, Issue 5
  • DOI: 10.1002/adma.201202920

Composition-Graded MoWS x Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry
journal, November 2017

  • Tan, Shu Min; Pumera, Martin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 48
  • DOI: 10.1021/acsami.7b09435

Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting
journal, June 2017


In Situ XAS and XRD Studies on the Formation of Mo Suboxides during Reduction of MoO 3
journal, July 2000

  • Ressler, T.; Jentoft, R. E.; Wienold, J.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 27
  • DOI: 10.1021/jp000690t

In Situ Synthesis Strategy for Hierarchically Porous Ni 2 P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution
journal, March 2017

  • Yan, Liting; Dai, Pengcheng; Wang, Ying
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 13
  • DOI: 10.1021/acsami.7b01037

Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP 3 and Ni 2 P
journal, January 2018

  • Wang, Kewei; She, Xilin; Chen, Shuai
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/c7ta10902d

An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
journal, January 2015

  • Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6982

Benchmarking the Activity, Stability, and Inherent Electrochemistry of Amorphous Molybdenum Sulfide for Hydrogen Production
journal, January 2019

  • Escalera-López, Daniel; Lou, Zhiheng; Rees, Neil V.
  • Advanced Energy Materials, Vol. 9, Issue 8
  • DOI: 10.1002/aenm.201802614

A building block strategy to access sulfur-functionalized polyoxometalate based systems using {Mo2S2O2} and {Mo3S4} as constitutional units, linkers or templates
journal, January 2012

  • Cadot, Emmanuel; Sokolov, Maxim N.; Fedin, Vladimir P.
  • Chemical Society Reviews, Vol. 41, Issue 22
  • DOI: 10.1039/c2cs35145e

Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution
journal, January 2013

  • Zhou, Weijia; Wu, Xue-Jun; Cao, Xiehong
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee41572d

Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
journal, August 2013


Local site symmetry of dispersed molybdenum oxide catalysts: XANES at the Mo L2,3-edges
journal, June 1993

  • Bare, Simon R.; Mitchell, Gary E.; Maj, Joseph J.
  • The Journal of Physical Chemistry, Vol. 97, Issue 22
  • DOI: 10.1021/j100124a043

Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
journal, January 2012

  • Merki, Daniel; Vrubel, Heron; Rovelli, Lorenzo
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20539d

Mesoporous MoO 3- x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions
journal, June 2016

  • Luo, Zhu; Miao, Ran; Huan, Tran Doan
  • Advanced Energy Materials, Vol. 6, Issue 16
  • DOI: 10.1002/aenm.201600528

Towards activation of amorphous MoS via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction
journal, December 2018


Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Basic Reaction Steps in the Sulfidation of Crystalline MoO3 to MoS2, As Studied by X-ray Photoelectron and Infrared Emission Spectroscopy
journal, January 1996

  • Weber, Th.; Muijsers, J. C.; van Wolput, J. H. M. C.
  • The Journal of Physical Chemistry, Vol. 100, Issue 33, p. 14144-14150
  • DOI: 10.1021/jp961204y

Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene
journal, September 2016


Hydrogen Evolution Reaction on Hybrid Catalysts of Vertical MoS 2 Nanosheets and Hydrogenated Graphene
journal, January 2018


Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
journal, August 2012

  • Benck, Jesse D.; Chen, Zhebo; Kuritzky, Leah Y.
  • ACS Catalysis, Vol. 2, Issue 9, p. 1916-1923
  • DOI: 10.1021/cs300451q

CoSe 2 and NiSe 2 Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting
journal, February 2016

  • Kwak, In Hye; Im, Hyung Soon; Jang, Dong Myung
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b12093

Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction
journal, February 2014

  • Li, Dong Jun; Maiti, Uday Narayan; Lim, Joonwon
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404108a

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets
journal, June 2015

  • Shi, Yi; Wang, Jiong; Wang, Chen
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b01732

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Electrochemically Fabricated Polypyrrole and MoS x Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst
journal, March 2014

  • Wang, Tanyuan; Zhuo, Junqiao; Du, Kuangzhou
  • Advanced Materials, Vol. 26, Issue 22
  • DOI: 10.1002/adma.201400265

Sustainable Hydrogen Production
journal, August 2004


Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production
journal, April 2017

  • Deng, Jiao; Li, Haobo; Wang, Suheng
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14430

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Tuning and mechanistic insights of metal chalcogenide molecular catalysts for the hydrogen-evolution reaction
journal, January 2019

  • McAllister, James; Bandeira, Nuno A. G.; McGlynn, Jessica C.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-018-08208-4

Controllable Disorder Engineering in Oxygen-Incorporated MoS 2 Ultrathin Nanosheets for Efficient Hydrogen Evolution
journal, November 2013

  • Xie, Junfeng; Zhang, Jiajia; Li, Shuang
  • Journal of the American Chemical Society, Vol. 135, Issue 47
  • DOI: 10.1021/ja408329q

Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts
journal, July 2014

  • Morales-Guio, Carlos G.; Hu, Xile
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5002022

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

(NiFe)S2 nanoparticles grown on graphene as an efficient electrocatalyst for oxygen evolution reaction
journal, October 2018


Design principles for hydrogen evolution reaction catalyst materials
journal, November 2016


Tunable Pt–MoS x Hybrid Catalysts for Hydrogen Evolution
journal, February 2018

  • Chia, Xinyi; Sutrisnoh, Nur Ayu Afira; Pumera, Martin
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 10
  • DOI: 10.1021/acsami.7b19346

Core‐shell architecture of NiSe 2 nanoparticles@nitrogen‐doped carbon for hydrogen evolution reaction in acidic and alkaline media
journal, July 2021

  • Do, Ha Huu; Le, Quyet Van; Lee, Tae Hyung
  • International Journal of Energy Research, Vol. 45, Issue 14
  • DOI: 10.1002/er.7066

Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation
journal, August 2017


Surface selectivity of Ni 3 S 2 toward hydrogen evolution reaction: a first-principles study
journal, January 2020

  • Zhang, Bo; Fu, Xiuli; Song, Li
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 44
  • DOI: 10.1039/d0cp03845h

Hierarchical 1T-MoS 2 nanotubular structures for enhanced supercapacitive performance
journal, January 2017

  • Yang, Shuang; Zhang, Ke; Wang, Changda
  • Journal of Materials Chemistry A, Vol. 5, Issue 45
  • DOI: 10.1039/c7ta08115d

[Mo12S12O12(OH)12(H2O)6]: A Cyclic Molecular Cluster Based on the [Mo2S2O2]2+ Building Block
journal, March 1998


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction
journal, November 2013

  • Wang, H.; Lu, Z.; Xu, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 49
  • DOI: 10.1073/pnas.1316792110

A molecular molybdenum-oxo catalyst for generating hydrogen from water
journal, April 2010

  • Karunadasa, Hemamala I.; Chang, Christopher J.; Long, Jeffrey R.
  • Nature, Vol. 464, Issue 7293
  • DOI: 10.1038/nature08969

Hierarchical Nanoassembly of MoS 2 /Co 9 S 8 /Ni 3 S 2 /Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range
journal, May 2019

  • Yang, Yan; Yao, Huiqin; Yu, Zihuan
  • Journal of the American Chemical Society, Vol. 141, Issue 26
  • DOI: 10.1021/jacs.9b04492

Differences between L 3 and L 2 x‐ray absorption spectra of transition metal compounds
journal, October 1994

  • de Groot, F. M. F.; Hu, Z. W.; Lopez, M. F.
  • The Journal of Chemical Physics, Vol. 101, Issue 8
  • DOI: 10.1063/1.468351

Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst
journal, December 2014

  • Lassalle-Kaiser, Benedikt; Merki, Daniel; Vrubel, Heron
  • Journal of the American Chemical Society, Vol. 137, Issue 1
  • DOI: 10.1021/ja510328m

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Generation of the triangulo -Group MO V -η-S 2 in the “Condensation” of [Mo VI O 2 S 2 ] 2 to [Mo 2vO 2 S 2 (S 2 ) 2 ] 2
journal, July 1979

  • Rittner, Walter; Müller, Achim; Neumann, Axel
  • Angewandte Chemie International Edition in English, Vol. 18, Issue 7
  • DOI: 10.1002/anie.197905301

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production
journal, July 2015

  • Gao, Min-Rui; Chan, Maria K. Y.; Sun, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8493

Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction
journal, November 2015

  • Staszak-Jirkovský, Jakub; Malliakas, Christos D.; Lopes, Pietro P.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4481