DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dense hydrogen layers for high performance MagLIF

Abstract

Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] experiments driven by the Z machine produce >1013 deuterium-deuterium fusion reactions [Gomez et al., Phys. Rev. Lett. 125, 155002 (2020)]. Simulations indicate high yields and gains (1000) with increased current and deuterium-tritium layers for burn propagation [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. Such a coating also isolates the metal liner from the gaseous fuel, which should reduce mixing of liner material into the fuel. However, the vapor density at the triple point is only 0.3 kg/m3, which is not high enough for MagLIF operation. We present two solutions to this problem. First, a fuel wetted low-density plastic foam can be used to form a layer on the inside of the liner. The desired vapor density can be obtained by controlling the temperature. This does however introduce carbon into the layer which will enhance radiation losses. Simulations indicate that this wetted foam layer can significantly contribute to the fusion yield when the foam density is less than 35 kg/m3. Second, we show that a pure frozen fuel layer can first be formed on the inside of the liner and then low temperature gaseous fuel can be introduced justmore » before the implosion without melting a significant amount of the ice layer. This approach is the most promising for MagLIF to produce high yield and gain.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1855793
Alternate Identifier(s):
OSTI ID: 1845573
Report Number(s):
SAND2022-1929J
Journal ID: ISSN 1070-664X; 703566; TRN: US2305054
Grant/Contract Number:  
NA0003525; NA-0033525; 213091
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 29; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; circuit theorems; shock waves; tritium; radiation losses; deuterium; computer programming; thermal conductivity; nuclear fusion; laser applications

Citation Formats

Slutz, S. A., Awe, T. J., and Crabtree, J. A. Dense hydrogen layers for high performance MagLIF. United States: N. p., 2022. Web. doi:10.1063/5.0081177.
Slutz, S. A., Awe, T. J., & Crabtree, J. A. Dense hydrogen layers for high performance MagLIF. United States. https://doi.org/10.1063/5.0081177
Slutz, S. A., Awe, T. J., and Crabtree, J. A. Thu . "Dense hydrogen layers for high performance MagLIF". United States. https://doi.org/10.1063/5.0081177. https://www.osti.gov/servlets/purl/1855793.
@article{osti_1855793,
title = {Dense hydrogen layers for high performance MagLIF},
author = {Slutz, S. A. and Awe, T. J. and Crabtree, J. A.},
abstractNote = {Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] experiments driven by the Z machine produce >1013 deuterium-deuterium fusion reactions [Gomez et al., Phys. Rev. Lett. 125, 155002 (2020)]. Simulations indicate high yields and gains (1000) with increased current and deuterium-tritium layers for burn propagation [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. Such a coating also isolates the metal liner from the gaseous fuel, which should reduce mixing of liner material into the fuel. However, the vapor density at the triple point is only 0.3 kg/m3, which is not high enough for MagLIF operation. We present two solutions to this problem. First, a fuel wetted low-density plastic foam can be used to form a layer on the inside of the liner. The desired vapor density can be obtained by controlling the temperature. This does however introduce carbon into the layer which will enhance radiation losses. Simulations indicate that this wetted foam layer can significantly contribute to the fusion yield when the foam density is less than 35 kg/m3. Second, we show that a pure frozen fuel layer can first be formed on the inside of the liner and then low temperature gaseous fuel can be introduced just before the implosion without melting a significant amount of the ice layer. This approach is the most promising for MagLIF to produce high yield and gain.},
doi = {10.1063/5.0081177},
journal = {Physics of Plasmas},
number = 2,
volume = 29,
place = {United States},
year = {Thu Feb 17 00:00:00 EST 2022},
month = {Thu Feb 17 00:00:00 EST 2022}
}

Works referenced in this record:

Single crystal growth and formation of defects in deuterium-tritium layers for inertial confinement nuclear fusion
journal, February 2009

  • Chernov, A. A.; Kozioziemski, B. J.; Koch, J. A.
  • Applied Physics Letters, Vol. 94, Issue 6
  • DOI: 10.1063/1.3080655

Development of a deuterium-ice extruder for inertial confinement fusion experiments on the Z Facility
journal, July 2021

  • Awe, T. J.; Perea, L.; Hanson, J. C.
  • Review of Scientific Instruments, Vol. 92, Issue 7
  • DOI: 10.1063/5.0055995

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)
journal, May 2015

  • Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4919394

Diagnosing magnetized liner inertial fusion experiments on Za)
journal, May 2015

  • Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921217

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Enhancing performance of magnetized liner inertial fusion at the Z facility
journal, November 2018

  • Slutz, S. A.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5054317

Penetrating Radiography of Imploding and Stagnating Beryllium Liners on the Z Accelerator
journal, September 2012


Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility
journal, December 2016


Measurements of Magneto-Rayleigh-Taylor Instability Growth during the Implosion of Initially Solid Al Tubes Driven by the 20-MA, 100-ns Z Facility
journal, October 2010


Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion
journal, May 2013

  • McBride, R. D.; Martin, M. R.; Lemke, R. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803079

Theory and three‐dimensional simulation of light filamentation in laser‐produced plasma
journal, July 1993

  • Berger, R. L.; Lasinski, B. F.; Kaiser, T. B.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 7
  • DOI: 10.1063/1.860758

Viscous Kelvin–Helmholtz instabilities in highly ionized plasmas
journal, October 2013

  • Roediger, E.; Kraft, R. P.; Nulsen, P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 2
  • DOI: 10.1093/mnras/stt1691

Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners
journal, May 2011

  • Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3560911

Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
journal, December 2012

  • Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.
  • IEEE Transactions on Plasma Science, Vol. 40, Issue 12
  • DOI: 10.1109/TPS.2012.2223488

Effects of magnetization on fusion product trapping and secondary neutron spectraa)
journal, May 2015

  • Knapp, P. F.; Schmit, P. F.; Hansen, S. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920948

High-Gain Magnetized Inertial Fusion
journal, January 2012


Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas
journal, February 1998

  • Schmitt, Andrew J.; Afeyan, Bedros B.
  • Physics of Plasmas, Vol. 5, Issue 2
  • DOI: 10.1063/1.872733

A new approach to foam-lined indirect-drive NIF ignition targets
journal, April 2012


Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
journal, November 2015

  • Stygar, W. A.; Awe, T. J.; Bailey, J. E.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 11
  • DOI: 10.1103/PhysRevSTAB.18.110401

Advances in NLTE modeling for integrated simulations
journal, January 2010


Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
journal, February 2016

  • Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941100