skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

Abstract

In this study, the MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion–relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D andmore » 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.« less

Authors:
; ; ; ; ; ; ; ORCiD logo;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1236903
Alternate Identifier(s):
OSTI ID: 1238658; OSTI ID: 1421119
Report Number(s):
SAND-2015-9191J
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Published Article
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Name: Physics of Plasmas Journal Volume: 23 Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ice; magnetic fields; laser heating; experiment design; inductance

Citation Formats

Slutz, S. A., Stygar, W. A., Gomez, M. R., Peterson, K. J., Sefkow, A. B., Sinars, D. B., Vesey, R. A., Campbell, E. M., and Betti, R.. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators. United States: N. p., 2016. Web. https://doi.org/10.1063/1.4941100.
Slutz, S. A., Stygar, W. A., Gomez, M. R., Peterson, K. J., Sefkow, A. B., Sinars, D. B., Vesey, R. A., Campbell, E. M., & Betti, R.. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators. United States. https://doi.org/10.1063/1.4941100
Slutz, S. A., Stygar, W. A., Gomez, M. R., Peterson, K. J., Sefkow, A. B., Sinars, D. B., Vesey, R. A., Campbell, E. M., and Betti, R.. Mon . "Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators". United States. https://doi.org/10.1063/1.4941100.
@article{osti_1236903,
title = {Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators},
author = {Slutz, S. A. and Stygar, W. A. and Gomez, M. R. and Peterson, K. J. and Sefkow, A. B. and Sinars, D. B. and Vesey, R. A. and Campbell, E. M. and Betti, R.},
abstractNote = {In this study, the MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion–relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.},
doi = {10.1063/1.4941100},
journal = {Physics of Plasmas},
number = 2,
volume = 23,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1063/1.4941100

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Parameter space for magnetized fuel targets in inertial confinement fusion
journal, March 1983


Magnetohydrodynamic behavior of thermonuclear fuel in a preconditioned electron beam imploded target
journal, January 1981


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

High-Gain Magnetized Inertial Fusion
journal, January 2012


Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
journal, December 2012

  • Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.
  • IEEE Transactions on Plasma Science, Vol. 40, Issue 12
  • DOI: 10.1109/TPS.2012.2223488

Measurements of Magneto-Rayleigh-Taylor Instability Growth during the Implosion of Initially Solid Al Tubes Driven by the 20-MA, 100-ns Z Facility
journal, October 2010


Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners
journal, May 2011

  • Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3560911

Penetrating Radiography of Imploding and Stagnating Beryllium Liners on the Z Accelerator
journal, September 2012


Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion
journal, May 2013

  • McBride, R. D.; Martin, M. R.; Lemke, R. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803079

Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field
journal, May 2014

  • Awe, T. J.; Jennings, C. A.; McBride, R. D.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872331

Electrothermal Instability Mitigation by Using Thick Dielectric Coatings on Magnetically Imploded Conductors
journal, April 2014


Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)
journal, May 2015

  • Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4919394

Production of Thermonuclear Neutrons from Deuterium-Filled Capsule Implosions Driven by Z -Pinch Dynamic Hohlraums
journal, June 2004


Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity
journal, April 2014

  • Hahn, K. D.; Cooper, G. W.; Ruiz, C. L.
  • Review of Scientific Instruments, Vol. 85, Issue 4
  • DOI: 10.1063/1.4870779

Diagnosing magnetized liner inertial fusion experiments on Za)
journal, May 2015

  • Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921217

Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion
journal, October 2014


Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Z-Beamlet: a multikilojoule, terawatt-class laser system
journal, January 2005

  • Rambo, Patrick K.; Smith, Ian C.; Porter, John L.
  • Applied Optics, Vol. 44, Issue 12
  • DOI: 10.1364/AO.44.002421

Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
journal, November 2015

  • Stygar, W. A.; Awe, T. J.; Bailey, J. E.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 11
  • DOI: 10.1103/PhysRevSTAB.18.110401

Ignition conditions for magnetized target fusion in cylindrical geometry
journal, January 2000


Displacement current phenomena in the magnetically insulated transmission lines of the refurbished Z accelerator
journal, December 2010

  • McBride, R. D.; Jennings, C. A.; Vesey, R. A.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 13, Issue 12
  • DOI: 10.1103/PhysRevSTAB.13.120401

ZAPP: The Z Astrophysical Plasma Properties collaboration
journal, May 2014

  • Rochau, G. A.; Bailey, J. E.; Falcon, R. E.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875330

Computational analysis of current-loss mechanisms in a post-hole convolute driven by magnetically insulated transmission lines
journal, March 2015

  • Rose, D. V.; Madrid, E. A.; Welch, D. R.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 3
  • DOI: 10.1103/PhysRevSTAB.18.030402

Pulsed-coil magnet systems for applying uniform 10–30 T fields to centimeter-scale targets on Sandia's Z facility
journal, December 2014

  • Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.
  • Review of Scientific Instruments, Vol. 85, Issue 12
  • DOI: 10.1063/1.4902566

Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
journal, May 2010

  • Betti, R.; Chang, P. Y.; Spears, B. K.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3380857

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma
journal, April 2015

  • Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4916777

Theory and three‐dimensional simulation of light filamentation in laser‐produced plasma
journal, July 1993

  • Berger, R. L.; Lasinski, B. F.; Kaiser, T. B.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 7
  • DOI: 10.1063/1.860758