DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors

Abstract

We report solid-state electrolyte materials with superior lithium ionic conductivities are vital to the next-generation Li-ion batteries. Molecular dynamics could provide atomic scale information to understand the diffusion process of Li-ion in these superionic conductor materials. Here, we implement the deep potential generator to set up an efficient protocol to automatically generate interatomic potentials for Li10GeP2S12-type solid-state electrolyte materials (Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12). The reliability and accuracy of the fast interatomic potentials are validated. With the potentials, we extend the simulation of the diffusion process to a wide temperature range (300 K–1000 K) and systems with large size (~1000 atoms). Important technical aspects such as the statistical error and size effect are carefully investigated, and benchmark tests including the effect of density functional, thermal expansion, and configurational disorder are performed. The computed data that consider these factors agree well with the experimental results, and we find that the three structures show different behaviors with respect to configurational disorder. Our work paves the way for further research on computation screening of solid-state electrolyte materials.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [1]; ORCiD logo [1];  [2]
  1. Xiamen University (China)
  2. Princeton Univ., NJ (United States)
  3. Institute of Applied Physics and Computational Mathematics, Beijing (China)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; US Department of the Navy, Office of Naval Research (ONR); National Science Foundation of China; Beijing Academy of Artificial Intelligence (BAAI)
OSTI Identifier:
1853189
Grant/Contract Number:  
SC0019394; 21861132015; 21991150; 21991151; 91745103; 22021001; 2017YFB0102000; N00014-13-1-0338; 11871110; 2016YFB0201200; 2016YFB0201203
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 154; Journal Issue: 9; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; interatomic potentials; molecular dynamics; ionic conductivity; electrolytes; machine learning; density functional theory; batteries

Citation Formats

Huang, Jianxing, Zhang, Linfeng, Wang, Han, Zhao, Jinbao, Cheng, Jun, and E, Weinan. Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors. United States: N. p., 2021. Web. doi:10.1063/5.0041849.
Huang, Jianxing, Zhang, Linfeng, Wang, Han, Zhao, Jinbao, Cheng, Jun, & E, Weinan. Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors. United States. https://doi.org/10.1063/5.0041849
Huang, Jianxing, Zhang, Linfeng, Wang, Han, Zhao, Jinbao, Cheng, Jun, and E, Weinan. Mon . "Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors". United States. https://doi.org/10.1063/5.0041849. https://www.osti.gov/servlets/purl/1853189.
@article{osti_1853189,
title = {Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors},
author = {Huang, Jianxing and Zhang, Linfeng and Wang, Han and Zhao, Jinbao and Cheng, Jun and E, Weinan},
abstractNote = {We report solid-state electrolyte materials with superior lithium ionic conductivities are vital to the next-generation Li-ion batteries. Molecular dynamics could provide atomic scale information to understand the diffusion process of Li-ion in these superionic conductor materials. Here, we implement the deep potential generator to set up an efficient protocol to automatically generate interatomic potentials for Li10GeP2S12-type solid-state electrolyte materials (Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12). The reliability and accuracy of the fast interatomic potentials are validated. With the potentials, we extend the simulation of the diffusion process to a wide temperature range (300 K–1000 K) and systems with large size (~1000 atoms). Important technical aspects such as the statistical error and size effect are carefully investigated, and benchmark tests including the effect of density functional, thermal expansion, and configurational disorder are performed. The computed data that consider these factors agree well with the experimental results, and we find that the three structures show different behaviors with respect to configurational disorder. Our work paves the way for further research on computation screening of solid-state electrolyte materials.},
doi = {10.1063/5.0041849},
journal = {Journal of Chemical Physics},
number = 9,
volume = 154,
place = {United States},
year = {Mon Mar 01 00:00:00 EST 2021},
month = {Mon Mar 01 00:00:00 EST 2021}
}

Works referenced in this record:

Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations
journal, January 2014


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Batteries: Getting solid
journal, April 2016


Chemical accuracy for the van der Waals density functional
journal, December 2009

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 2
  • DOI: 10.1088/0953-8984/22/2/022201

The effects of mechanical constriction on the operation of sulfide based solid-state batteries
journal, January 2019

  • Fitzhugh, William; Ye, Luhan; Li, Xin
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05248h

A new ultrafast superionic Li-conductor: ion dynamics in Li 11 Si 2 PS 12 and comparison with other tetragonal LGPS-type electrolytes
journal, January 2014

  • Kuhn, Alexander; Gerbig, Oliver; Zhu, Changbao
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 28
  • DOI: 10.1039/c4cp02046d

Research data supporting "Data-driven learning and prediction of inorganic crystal structures"
dataset, January 2018

  • Deringer, Vl; Proserpio, Davide M.; Csanyi, Gabor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.25572

Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
journal, July 2017


Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
journal, April 2019

  • Bernstein, Noam; Bhattarai, Bishal; Csányi, Gábor
  • Angewandte Chemie, Vol. 131, Issue 21
  • DOI: 10.1002/ange.201902625

Li 10 SnP 2 S 12 : An Affordable Lithium Superionic Conductor
journal, October 2013

  • Bron, Philipp; Johansson, Sebastian; Zick, Klaus
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja407393y

De novo exploration and self-guided learning of potential-energy surfaces
journal, October 2019

  • Bernstein, Noam; Csányi, Gábor; Deringer, Volker L.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0236-6

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Chemical accuracy for the van der Waals density functional
journal, December 2009

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 2
  • DOI: 10.1088/0953-8984/22/2/022201

Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction
journal, January 2013


Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12
journal, January 2013

  • Kuhn, Alexander; Köhler, Jürgen; Lotsch, Bettina V.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 28
  • DOI: 10.1039/c3cp51985f

Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries
journal, October 2018


Lithium Diffusion in Layered Li[sub x]CoO[sub 2]
journal, January 1999

  • Van der Ven, A.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 7
  • DOI: 10.1149/1.1391130

How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study
journal, February 2020


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Structure–property relationships in lithium superionic conductors having a Li 10 GeP 2 S 12 -type structure
journal, December 2015

  • Hori, Satoshi; Taminato, Sou; Suzuki, Kota
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 71, Issue 6
  • DOI: 10.1107/s2052520615022283

Phase Diagram of the Li 4 GeS 4 -Li 3 PS 4 Quasi-Binary System Containing the Superionic Conductor Li 10 GeP 2 S 12
journal, July 2015

  • Hori, Satoshi; Kato, Masahiko; Suzuki, Kota
  • Journal of the American Ceramic Society, Vol. 98, Issue 10
  • DOI: 10.1111/jace.13694

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
journal, July 2018


In-Channel and In-Plane Li Ion Diffusions in the Superionic Conductor Li 10 GeP 2 S 12 Probed by Solid-State NMR
journal, August 2015


Origin of fast ion diffusion in super-ionic conductors
journal, June 2017

  • He, Xingfeng; Zhu, Yizhou; Mo, Yifei
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15893

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations
journal, December 2015


Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li 6+ x P 1– x M x S 5 I (M = Si, Ge, Sn)
journal, June 2019


Lithium Conductivity and Meyer-Neldel Rule in Li 3 PO 4 –Li 3 VO 4 –Li 4 GeO 4 Lithium Superionic Conductors
journal, July 2018


Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
journal, June 2018

  • Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5016317

Theoretical study of Na + transport in the solid-state electrolyte Na 3 OBr based on deep potential molecular dynamics
journal, January 2021

  • Li, Han-Xiao; Zhou, Xu-Yuan; Wang, Yue-Chao
  • Inorganic Chemistry Frontiers, Vol. 8, Issue 2
  • DOI: 10.1039/d0qi00921k

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

De novo exploration and self-guided learning of potential-energy surfaces
journal, October 2019

  • Bernstein, Noam; Csányi, Gábor; Deringer, Volker L.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0236-6

Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation
journal, March 1999


The haven ratio in fast ionic conductors
journal, October 1982


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li 10 GeP 2 S 12
journal, August 2016


Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Modeling lithium-ion solid-state electrolytes with a pinball model
journal, June 2018


Towards an atomistic understanding of disordered carbon electrode materials
journal, January 2018

  • Deringer, Volker L.; Merlet, Céline; Hu, Yuchen
  • Chemical Communications, Vol. 54, Issue 47
  • DOI: 10.1039/c8cc01388h

Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li 4 SiO 4 –Li 3 PO 4 Solid Electrolytes
journal, July 2015

  • Deng, Yue; Eames, Christopher; Chotard, Jean-Noël
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04444

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Predictive modeling and design rules for solid electrolytes
journal, October 2018

  • Ceder, Gerbrand; Ong, Shyue Ping; Wang, Yan
  • MRS Bulletin, Vol. 43, Issue 10
  • DOI: 10.1557/mrs.2018.210

On representing chemical environments
journal, May 2013


Data-driven learning and prediction of inorganic crystal structures
journal, January 2018

  • Deringer, Volker L.; Proserpio, Davide M.; Csányi, Gábor
  • Faraday Discussions, Vol. 211
  • DOI: 10.1039/c8fd00034d

Machine-learned multi-system surrogate models for materials prediction
journal, April 2019

  • Nyshadham, Chandramouli; Rupp, Matthias; Bekker, Brayden
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0189-9

Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
journal, June 2019


An electrostatic spectral neighbor analysis potential for lithium nitride
journal, July 2019


Substitutional disorder: structure and ion dynamics of the argyrodites Li 6 PS 5 Cl, Li 6 PS 5 Br and Li 6 PS 5 I
journal, January 2019

  • Hanghofer, I.; Brinek, M.; Eisbacher, S. L.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 16
  • DOI: 10.1039/c9cp00664h

An Entropically Stabilized Fast-Ion Conductor: Li 3.25 [Si 0.25 P 0.75 ]S 4
journal, September 2019


Simulating Diffusion Properties of Solid‐State Electrolytes via a Neural Network Potential: Performance and Training Scheme
journal, December 2019

  • Marcolongo, Aris; Binninger, Tobias; Zipoli, Federico
  • ChemSystemsChem, Vol. 2, Issue 3
  • DOI: 10.1002/syst.201900031

Projector augmented-wave method
journal, December 1994


Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li 10+δ Ge 1+δ P 2−δ S 12
journal, January 2015

  • Kwon, Ohmin; Hirayama, Masaaki; Suzuki, Kota
  • Journal of Materials Chemistry A, Vol. 3, Issue 1
  • DOI: 10.1039/c4ta05231e

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/physrevlett.77.3865

System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions
journal, October 2004

  • Yeh, In-Chul; Hummer, Gerhard
  • The Journal of Physical Chemistry B, Vol. 108, Issue 40
  • DOI: 10.1021/jp0477147

Synthesis, structure, and ionic conductivity of solid solution, Li 10+δ M 1+δ P 2−δ S 12 (M = Si, Sn)
journal, January 2014

  • Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki
  • Faraday Discuss., Vol. 176
  • DOI: 10.1039/c4fd00143e

Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
journal, January 2013

  • Kuhn, Alexander; Duppel, Viola; Lotsch, Bettina V.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41728j

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
journal, February 2020


A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/c3ee41655k

Statistical variances of diffusional properties from ab initio molecular dynamics simulations
journal, April 2018


Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials
journal, April 2020

  • Mortazavi, Bohayra; Podryabinkin, Evgeny V.; Novikov, Ivan S.
  • Journal of Physics: Materials, Vol. 3, Issue 2
  • DOI: 10.1088/2515-7639/ab7cbb

Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4
journal, November 1984


Ionic Conductivity and Its Dependence on Structural Disorder in Halogenated Argyrodites Li 6 PS 5 X (X = Br, Cl, I)
journal, October 2019


New horizons for inorganic solid state ion conductors
journal, January 2018

  • Zhang, Zhizhen; Shao, Yuanjun; Lotsch, Bettina
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/c8ee01053f

Machine learning of molecular properties: Locality and active learning
journal, June 2018

  • Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5005095

Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor
journal, January 2014

  • Whiteley, Justin M.; Woo, Jae H.; Hu, Enyuan
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0501412jes

High-throughput production of force-fields for solid-state electrolyte materials
journal, August 2020

  • Kobayashi, Ryo; Miyaji, Yasuhiro; Nakano, Koki
  • APL Materials, Vol. 8, Issue 8
  • DOI: 10.1063/5.0015373

Structural and Compositional Factors That Control the Li-Ion Conductivity in LiPON Electrolytes
journal, September 2018


Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933

Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations
journal, December 2015


Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
journal, January 2013

  • Kuhn, Alexander; Duppel, Viola; Lotsch, Bettina V.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41728j

Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
journal, December 2017

  • Li, Wenwen; Ando, Yasunobu; Minamitani, Emi
  • The Journal of Chemical Physics, Vol. 147, Issue 21
  • DOI: 10.1063/1.4997242

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Constructing first-principles phase diagrams of amorphous Li x Si using machine-learning-assisted sampling with an evolutionary algorithm
journal, June 2018

  • Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017661

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Elastic Properties of New Solid State Electrolyte Material Li10GeP2S12: A Study from First-Principles Calculations
journal, February 2014