DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical Study of the Phenoxy Radical Recombination with the O(3P) Atom, Phenyl plus Molecular Oxygen Revisited

Abstract

Quantum chemical calculations of the C6H5O2 potential energy surface (PES) were carried out to study the mechanism of the phenoxy + O(3P) and phenyl + O2 reactions. CASPT2(15e,13o)/CBS//CASSCF(15e,13o)/DZP multi-reference calculations were utilized to map out the minimum energy path for the entrance channels of the phenoxy + O(3P) reaction. Stationary points on the C6H5O2 PES were explored at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311++G** level for the species with a single-reference character of the wave function and at the CASPT2(15e,13o)/CBS//B3LYP/6-311++G** level of theory for the species with a multi-reference character of the wave function. Conventional, variational, and variable reaction coordinate transition state theories were employed in Rice-Ramsperger-Kassel-Marcus Master Equation calculations to assess temperature- and pressure-dependent phenomenological rate constants and product branching ratios. Here, the main bimolecular product channels of the phenoxy + O(3P) reaction are concluded to be para/ortho-benzoquinone + H, 2,4-cyclopentadienone + HCO, and, at high temperatures, also phenyl + O2. The main bimolecular product channels of the phenyl + O2 reaction include 2,4-cyclopentadienone + HCO at lower temperatures, and phenoxy + O(3P) at higher temperatures. Both for the phenoxy + O(3P) and phenyl + O2 reactions, the collisional stabilization of peroxybenzene at low temperatures and high pressures competes with the bimolecular productmore » channels.« less

Authors:
 [1];  [2];  [2]; ORCiD logo [1]
  1. Florida International Univ. (FIU), Miami, FL (United States)
  2. Samara National Research Univ. (Russia); Lebedev Physical Inst., Samara (Russia)
Publication Date:
Research Org.:
Florida International Univ. (FIU), Miami, FL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1843950
Grant/Contract Number:  
FG02-04ER15570
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 125; Journal Issue: 18; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Energy; Kinetic parameters; Chemical calculations; Phenyls; Molecules

Citation Formats

Morozov, Alexander N., Medvedkov, Iakov A., Azyazov, Valeriy N., and Mebel, Alexander M. Theoretical Study of the Phenoxy Radical Recombination with the O(3P) Atom, Phenyl plus Molecular Oxygen Revisited. United States: N. p., 2021. Web. doi:10.1021/acs.jpca.1c01545.
Morozov, Alexander N., Medvedkov, Iakov A., Azyazov, Valeriy N., & Mebel, Alexander M. Theoretical Study of the Phenoxy Radical Recombination with the O(3P) Atom, Phenyl plus Molecular Oxygen Revisited. United States. https://doi.org/10.1021/acs.jpca.1c01545
Morozov, Alexander N., Medvedkov, Iakov A., Azyazov, Valeriy N., and Mebel, Alexander M. Fri . "Theoretical Study of the Phenoxy Radical Recombination with the O(3P) Atom, Phenyl plus Molecular Oxygen Revisited". United States. https://doi.org/10.1021/acs.jpca.1c01545. https://www.osti.gov/servlets/purl/1843950.
@article{osti_1843950,
title = {Theoretical Study of the Phenoxy Radical Recombination with the O(3P) Atom, Phenyl plus Molecular Oxygen Revisited},
author = {Morozov, Alexander N. and Medvedkov, Iakov A. and Azyazov, Valeriy N. and Mebel, Alexander M.},
abstractNote = {Quantum chemical calculations of the C6H5O2 potential energy surface (PES) were carried out to study the mechanism of the phenoxy + O(3P) and phenyl + O2 reactions. CASPT2(15e,13o)/CBS//CASSCF(15e,13o)/DZP multi-reference calculations were utilized to map out the minimum energy path for the entrance channels of the phenoxy + O(3P) reaction. Stationary points on the C6H5O2 PES were explored at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311++G** level for the species with a single-reference character of the wave function and at the CASPT2(15e,13o)/CBS//B3LYP/6-311++G** level of theory for the species with a multi-reference character of the wave function. Conventional, variational, and variable reaction coordinate transition state theories were employed in Rice-Ramsperger-Kassel-Marcus Master Equation calculations to assess temperature- and pressure-dependent phenomenological rate constants and product branching ratios. Here, the main bimolecular product channels of the phenoxy + O(3P) reaction are concluded to be para/ortho-benzoquinone + H, 2,4-cyclopentadienone + HCO, and, at high temperatures, also phenyl + O2. The main bimolecular product channels of the phenyl + O2 reaction include 2,4-cyclopentadienone + HCO at lower temperatures, and phenoxy + O(3P) at higher temperatures. Both for the phenoxy + O(3P) and phenyl + O2 reactions, the collisional stabilization of peroxybenzene at low temperatures and high pressures competes with the bimolecular product channels.},
doi = {10.1021/acs.jpca.1c01545},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 18,
volume = 125,
place = {United States},
year = {Fri Apr 30 00:00:00 EDT 2021},
month = {Fri Apr 30 00:00:00 EDT 2021}
}

Works referenced in this record:

Oxidation and combustion of low alkylbenzenes at high pressure: comparative reactivity and auto-ignition
journal, March 2000


Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways
journal, August 2000


Molecular mass growth through ring expansion in polycyclic aromatic hydrocarbons via radical–radical reactions
journal, August 2019


On the mechanism of soot nucleation
journal, January 2020

  • Frenklach, Michael; Mebel, Alexander M.
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 9
  • DOI: 10.1039/D0CP00116C

Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth
journal, September 2018


Fuel dependence of benzene pathways
journal, January 2009

  • Zhang, Hongzhi R.; Eddings, Eric G.; Sarofim, Adel F.
  • Proceedings of the Combustion Institute, Vol. 32, Issue 1
  • DOI: 10.1016/j.proci.2008.06.011

Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems
journal, November 2014

  • Parker, Dorian S. N.; Kaiser, Ralf I.; Troy, Tyler P.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/jp509170x

Reaction mechanism of soot formation in flames
journal, February 2002

  • Frenklach, Michael
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 11
  • DOI: 10.1039/b110045a

Rate constants for abstraction of hydrogen from benzene, toluene, and cyclopentane by methyl and ethyl radicals over the temperature range 650–770 K
journal, October 1989

  • Zhang, H. -X.; Ahonkhai, S. I.; Back, M. H.
  • Canadian Journal of Chemistry, Vol. 67, Issue 10
  • DOI: 10.1139/v89-235

High-Temperature Reactions of OH Radicals with Benzene and Toluene
journal, April 2006

  • Seta, Takamasa; Nakajima, Masakazu; Miyoshi, Akira
  • The Journal of Physical Chemistry A, Vol. 110, Issue 15
  • DOI: 10.1021/jp0575456

Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene
journal, January 2016

  • Mebel, Alexander M.; Georgievskii, Yuri; Jasper, Ahren W.
  • Faraday Discussions, Vol. 195
  • DOI: 10.1039/C6FD00111D

Computational Study of the Unimolecular Decomposition Pathways of Phenylperoxy Radical
journal, April 2000

  • Fadden, Michael J.; Barckholtz, Cynthia; Hadad, Christopher M.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 13
  • DOI: 10.1021/jp993990n

The Reaction of Phenyl Radical with Molecular Oxygen:  A G2M Study of the Potential Energy Surface
journal, July 2005

  • Tokmakov, Igor V.; Kim, Gap-Sue; Kislov, Vadim V.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 27
  • DOI: 10.1021/jp051712k

Phenoxy Radical (C 6 H 5 O) Formation under Single Collision Conditions from Reaction of the Phenyl Radical (C 6 H 5 , X 2 A 1 ) with Molecular Oxygen (O 2 , X 3 Σ g ): The Final Chapter?
journal, October 2011

  • Parker, Dorian S. N.; Zhang, Fangtong; Kaiser, Ralf I.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 42
  • DOI: 10.1021/jp206160q

Unimolecular decomposition of the phenoxy radical in shock waves
journal, October 1985

  • Lin, Chin-Yu; Lin, M. C.
  • International Journal of Chemical Kinetics, Vol. 17, Issue 10
  • DOI: 10.1002/kin.550171002

Ab Initio Study of the Mechanism for the Thermal Decomposition of the Phenoxy Radical
journal, January 1996

  • Liu, Ruifeng; Morokuma, Keiji; Mebel, Alexander M.
  • The Journal of Physical Chemistry, Vol. 100, Issue 22
  • DOI: 10.1021/jp953566w

Kinetics of the C6H5 + O2 Reaction at Low Temperatures
journal, October 1994

  • Yu, T.; Lin, M. C.
  • Journal of the American Chemical Society, Vol. 116, Issue 21
  • DOI: 10.1021/ja00100a022

Computational Study of the Mechanisms for the Reaction of O 2 ( 3 Σ g ) with Aromatic Radicals
journal, October 1999

  • Barckholtz, Cynthia; Fadden, Michael J.; Hadad, Christopher M.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 40
  • DOI: 10.1021/jp991692k

Crossed beam reaction of the phenyl radical, (C6H5, X2A′) with molecular oxygen <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mtext>,</mml:mtext><mml:msup><mml:mrow><mml:mtext>X</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>g</mml:mtext></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>: Observation of the phenoxy radical, (C6H5O, X2A′)
journal, November 2007


Collision Complex Lifetimes in the Reaction C 6 H 5 + O 2 → C 6 H 5 O + O
journal, March 2010

  • Albert, Daniel R.; Davis, H. Floyd
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 7
  • DOI: 10.1021/jz100199z

Recombination of aromatic radicals with molecular oxygen
journal, January 2017


Rate coefficients and product branching ratios for the oxidation of phenyl and naphthyl radicals: A theoretical RRKM-ME study
journal, January 2015

  • Kislov, V. V.; Singh, R. I.; Edwards, D. E.
  • Proceedings of the Combustion Institute, Vol. 35, Issue 2
  • DOI: 10.1016/j.proci.2014.06.135

Predictive a priori pressure-dependent kinetics
journal, December 2014


Kinetics of the reaction between oxygen atoms and ethyl radicals
journal, January 1988

  • Slagle, Irene R.; Sarzyński, Dariusz; Gutman, David
  • J. Chem. Soc., Faraday Trans. 2, Vol. 84, Issue 5
  • DOI: 10.1039/F29888400491

Reactions of oxygen atoms with hydrocarbon radicals: a priori kinetic predictions for the CH3+O, C2H5+O, and C2H3+O reactions
journal, January 2005

  • Harding, Lawrence B.; Klippenstein, Stephen J.; Georgievskii, Yuri
  • Proceedings of the Combustion Institute, Vol. 30, Issue 1
  • DOI: 10.1016/j.proci.2004.08.184

Scission of the Five-Membered Ring in 1- H -Inden-1-one C 9 H 6 O and Indenyl C 9 H 7 in the Reactions with H and O Atoms
journal, June 2019

  • Ghildina, A. R.; Porfiriev, D. P.; Azyazov, V. N.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 27
  • DOI: 10.1021/acs.jpca.9b04578

Ab Initio and RRKM Calculations for Multichannel Rate Constants of the C 2 H 3 + O 2 Reaction
journal, January 1996

  • Mebel, A. M.; Diau, E. W. G.; Lin, M. C.
  • Journal of the American Chemical Society, Vol. 118, Issue 40
  • DOI: 10.1021/ja961476e

Modeling ethylene combustion from low to high pressure
journal, January 2002


Temperature and Pressure-Dependent Rate Coefficients for the Reaction of Vinyl Radical with Molecular Oxygen
journal, February 2015

  • Goldsmith, C. Franklin; Harding, Lawrence B.; Georgievskii, Yuri
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpca.5b01088

Multireference perturbation theory for large restricted and selected active space reference wave functions
journal, April 2000

  • Celani, Paolo; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 112, Issue 13
  • DOI: 10.1063/1.481132

Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients
journal, August 2011

  • Shiozaki, Toru; Győrffy, Werner; Celani, Paolo
  • The Journal of Chemical Physics, Vol. 135, Issue 8
  • DOI: 10.1063/1.3633329

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Variational transition state theory: theoretical framework and recent developments
journal, January 2017

  • Bao, Junwei Lucas; Truhlar, Donald G.
  • Chemical Society Reviews, Vol. 46, Issue 24
  • DOI: 10.1039/C7CS00602K

Modification of the g a u s s i a n 2 theoretical model: The use of coupled‐cluster energies, density‐functional geometries, and frequencies
journal, November 1995

  • Mebel, A. M.; Morokuma, K.; Lin, M. C.
  • The Journal of Chemical Physics, Vol. 103, Issue 17
  • DOI: 10.1063/1.470313

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Accurate reaction paths using a Hessian based predictor–corrector integrator
journal, June 2004

  • Hratchian, Hrant P.; Schlegel, H. Bernhard
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1724823

A simple and efficient CCSD(T)-F12 approximation
journal, December 2007

  • Adler, Thomas B.; Knizia, Gerald; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 127, Issue 22
  • DOI: 10.1063/1.2817618

Simplified CCSD(T)-F12 methods: Theory and benchmarks
journal, February 2009

  • Knizia, Gerald; Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 130, Issue 5
  • DOI: 10.1063/1.3054300

The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule
journal, February 1981

  • Siegbahn, Per E. M.; Almlöf, Jan; Heiberg, Anders
  • The Journal of Chemical Physics, Vol. 74, Issue 4
  • DOI: 10.1063/1.441359

Basis set convergence in second-row compounds. The importance of core polarization functions
journal, January 1998


Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s5p) Atomic Basis Sets for the First‐Row Atoms
journal, October 1970

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 53, Issue 7
  • DOI: 10.1063/1.1674408

Gaussian Basis Sets for Molecular Calculations
book, January 1977


Molpro: a general-purpose quantum chemistry program package: Molpro
journal, July 2011

  • Werner, Hans-Joachim; Knowles, Peter J.; Knizia, Gerald
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.82

Unimolecular Dissociations and Free Radical Recombination Reactions
journal, March 1952

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 20, Issue 3
  • DOI: 10.1063/1.1700424

Current Status of Transition-State Theory
journal, January 1996

  • Truhlar, Donald G.; Garrett, Bruce C.; Klippenstein, Stephen J.
  • The Journal of Physical Chemistry, Vol. 100, Issue 31
  • DOI: 10.1021/jp953748q

Tunneling corrections to unimolecular rate constants, with application to formaldehyde
journal, November 1979

  • Miller, William H.
  • Journal of the American Chemical Society, Vol. 101, Issue 23
  • DOI: 10.1021/ja00517a004

Variational optimizations in the Rice–Ramsperger–Kassel–Marcus theory calculations for unimolecular dissociations with no reverse barrier
journal, January 1992

  • Klippenstein, Stephen J.
  • The Journal of Chemical Physics, Vol. 96, Issue 1
  • DOI: 10.1063/1.462472

Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5
journal, January 2007

  • Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 31
  • DOI: 10.1039/b703261g

Variable reaction coordinate transition state theory: Analytic results and application to the C2H3+H→C2H4 reaction
journal, March 2003

  • Georgievskii, Yuri; Klippenstein, Stephen J.
  • The Journal of Chemical Physics, Vol. 118, Issue 12
  • DOI: 10.1063/1.1539035

Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions
journal, May 2013

  • Georgievskii, Yuri; Miller, James A.; Burke, Michael P.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 46
  • DOI: 10.1021/jp4060704

Temperature- and pressure-dependent rate coefficients for the HACA pathways from benzene to naphthalene
journal, January 2017

  • Mebel, Alexander M.; Georgievskii, Yuri; Jasper, Ahren W.
  • Proceedings of the Combustion Institute, Vol. 36, Issue 1
  • DOI: 10.1016/j.proci.2016.07.013

Theory of thermal unimolecular reactions at low pressures. I. Solutions of the master equation
journal, June 1977

  • Troe, J.
  • The Journal of Chemical Physics, Vol. 66, Issue 11
  • DOI: 10.1063/1.433837

Ab initio molecular orbital study of the O + C6H5O reaction
journal, June 1995

  • Lin, M. C.; Mebel, A. M.
  • Journal of Physical Organic Chemistry, Vol. 8, Issue 6
  • DOI: 10.1002/poc.610080605

Classical phase space theory for product state distributions with application to the vj vector correlation
journal, October 1995

  • Klippenstein, Stephen J.; Cline, Joseph I.
  • The Journal of Chemical Physics, Vol. 103, Issue 13
  • DOI: 10.1063/1.470529