DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems

Abstract

The reaction of the phenyl radical (C6H5) with molecular oxygen (O2) plays a central role in the degradation of poly- and monocyclic aromatic radicals in combustion systems which would otherwise react with fuel components to form polycyclic aromatic hydrocarbons (PAHs) and eventually soot. Despite intense theoretical and experimental scrutiny over half a century, the overall reaction channels have not all been experimentally identified. Tunable vacuum ultraviolet photoionization in conjunction with a combustion simulating chemical reactor uniquely provides the complete isomer specific product spectrum and branching ratios of this prototype reaction. In the reaction of phenyl radicals and molecular oxygen at 873 K and 1003 K, ortho-benzoquinone (o-C6H4O2), the phenoxy radical (C6H5O), and cyclopentadienyl radical (C5H5) were identified as primary products formed through emission of atomic hydrogen, atomic oxygen and carbon dioxide. Furan (C4H4O), acrolein (C3H4O), and ketene (C2H2O) were also identified as primary products formed through ring opening and fragmentation of the 7-membered ring 2-oxepinoxy radical. Secondary reaction products para-benzoquinone (p-C6H4O2), phenol (C6H5OH), cyclopentadiene (C5H6), 2,4-cyclopentadienone (C5H4O), vinylacetylene (C4H4), and acetylene (C2H2) were also identified. The pyranyl radical (C5H5O) was not detected; however, electronic structure calculations show that it is formed and isomerizes to 2,4-cyclopentadienone through atomic hydrogen emission. Inmore » combustion systems, barrierless phenyl-type radical oxidation reactions could even degrade more complex aromatic radicals. Lastly, an understanding of these elementary processes is expected to lead to a better understanding toward the elimination of carcinogenic, mutagenic, and environmentally hazardous byproducts of combustion systems such as PAHs.« less

Authors:
 [1];  [1];  [2];  [2];  [2];  [3]
  1. Univ. of Hawaii at Manoa, Honolulu, HI (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Florida International Univ., Miami, FL (United States)
Publication Date:
Research Org.:
Univ. of Hawaii at Manoa, Honolulu, HI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1602912
Grant/Contract Number:  
FG02-03ER15411; FG02-04ER15570; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 119; Journal Issue: 28; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Oxygen; Chemical reactions; Oxides; Inorganic carbon compounds; Carbon

Citation Formats

Parker, Dorian S. N., Kaiser, Ralf I., Troy, Tyler P., Kostko, Oleg, Ahmed, Musahid, and Mebel, Alexander M. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems. United States: N. p., 2014. Web. doi:10.1021/jp509170x.
Parker, Dorian S. N., Kaiser, Ralf I., Troy, Tyler P., Kostko, Oleg, Ahmed, Musahid, & Mebel, Alexander M. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems. United States. https://doi.org/10.1021/jp509170x
Parker, Dorian S. N., Kaiser, Ralf I., Troy, Tyler P., Kostko, Oleg, Ahmed, Musahid, and Mebel, Alexander M. Thu . "Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems". United States. https://doi.org/10.1021/jp509170x. https://www.osti.gov/servlets/purl/1602912.
@article{osti_1602912,
title = {Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems},
author = {Parker, Dorian S. N. and Kaiser, Ralf I. and Troy, Tyler P. and Kostko, Oleg and Ahmed, Musahid and Mebel, Alexander M.},
abstractNote = {The reaction of the phenyl radical (C6H5) with molecular oxygen (O2) plays a central role in the degradation of poly- and monocyclic aromatic radicals in combustion systems which would otherwise react with fuel components to form polycyclic aromatic hydrocarbons (PAHs) and eventually soot. Despite intense theoretical and experimental scrutiny over half a century, the overall reaction channels have not all been experimentally identified. Tunable vacuum ultraviolet photoionization in conjunction with a combustion simulating chemical reactor uniquely provides the complete isomer specific product spectrum and branching ratios of this prototype reaction. In the reaction of phenyl radicals and molecular oxygen at 873 K and 1003 K, ortho-benzoquinone (o-C6H4O2), the phenoxy radical (C6H5O), and cyclopentadienyl radical (C5H5) were identified as primary products formed through emission of atomic hydrogen, atomic oxygen and carbon dioxide. Furan (C4H4O), acrolein (C3H4O), and ketene (C2H2O) were also identified as primary products formed through ring opening and fragmentation of the 7-membered ring 2-oxepinoxy radical. Secondary reaction products para-benzoquinone (p-C6H4O2), phenol (C6H5OH), cyclopentadiene (C5H6), 2,4-cyclopentadienone (C5H4O), vinylacetylene (C4H4), and acetylene (C2H2) were also identified. The pyranyl radical (C5H5O) was not detected; however, electronic structure calculations show that it is formed and isomerizes to 2,4-cyclopentadienone through atomic hydrogen emission. In combustion systems, barrierless phenyl-type radical oxidation reactions could even degrade more complex aromatic radicals. Lastly, an understanding of these elementary processes is expected to lead to a better understanding toward the elimination of carcinogenic, mutagenic, and environmentally hazardous byproducts of combustion systems such as PAHs.},
doi = {10.1021/jp509170x},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 28,
volume = 119,
place = {United States},
year = {Thu Nov 13 00:00:00 EST 2014},
month = {Thu Nov 13 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action
journal, January 2005

  • Baird, William M.; Hooven, Louisa A.; Mahadevan, Brinda
  • Environmental and Molecular Mutagenesis, Vol. 45, Issue 2-3
  • DOI: 10.1002/em.20095

Reaction mechanism of soot formation in flames
journal, February 2002

  • Frenklach, Michael
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 11
  • DOI: 10.1039/b110045a

Low temperature formation of naphthalene and its role in the synthesis of PAHs (Polycyclic Aromatic Hydrocarbons) in the interstellar medium
journal, December 2011

  • Parker, D. S. N.; Zhang, F.; Kim, Y. S.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 1
  • DOI: 10.1073/pnas.1113827108

PAH Formation under Single Collision Conditions: Reaction of Phenyl Radical and 1,3-Butadiene to Form 1,4-Dihydronaphthalene
journal, April 2012

  • Kaiser, R. I.; Parker, D. S. N.; Zhang, F.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 17
  • DOI: 10.1021/jp301775z

Indene Formation under Single-Collision Conditions from the Reaction of Phenyl Radicals with Allene and Methylacetylene-A Crossed Molecular Beam and Ab Initio Study
journal, September 2011

  • Parker, Dr Dorian S. N.; Zhang, Dr Fangtong; Kaiser, Dr Ralf I.
  • Chemistry - An Asian Journal, Vol. 6, Issue 11
  • DOI: 10.1002/asia.201100535

Computational Study of the Mechanisms for the Reaction of O 2 ( 3 Σ g ) with Aromatic Radicals
journal, October 1999

  • Barckholtz, Cynthia; Fadden, Michael J.; Hadad, Christopher M.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 40
  • DOI: 10.1021/jp991692k

The Reaction of Phenyl Radical with Molecular Oxygen:  A G2M Study of the Potential Energy Surface
journal, July 2005

  • Tokmakov, Igor V.; Kim, Gap-Sue; Kislov, Vadim V.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 27
  • DOI: 10.1021/jp051712k

Kinetics of the C6H5 + O2 Reaction at Low Temperatures
journal, October 1994

  • Yu, T.; Lin, M. C.
  • Journal of the American Chemical Society, Vol. 116, Issue 21
  • DOI: 10.1021/ja00100a022

Computational Study of the Unimolecular Decomposition Pathways of Phenylperoxy Radical
journal, April 2000

  • Fadden, Michael J.; Barckholtz, Cynthia; Hadad, Christopher M.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 13
  • DOI: 10.1021/jp993990n

Phenoxy Radical (C 6 H 5 O) Formation under Single Collision Conditions from Reaction of the Phenyl Radical (C 6 H 5 , X 2 A 1 ) with Molecular Oxygen (O 2 , X 3 Σ g ): The Final Chapter?
journal, October 2011

  • Parker, Dorian S. N.; Zhang, Fangtong; Kaiser, Ralf I.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 42
  • DOI: 10.1021/jp206160q

Collision Complex Lifetimes in the Reaction C 6 H 5 + O 2 → C 6 H 5 O + O
journal, March 2010

  • Albert, Daniel R.; Davis, H. Floyd
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 7
  • DOI: 10.1021/jz100199z

Crossed beam reaction of the phenyl radical, (C6H5, X2A′) with molecular oxygen <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mtext>,</mml:mtext><mml:msup><mml:mrow><mml:mtext>X</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Σ</mml:mi></mml:mrow><mml:mrow><mml:mtext>g</mml:mtext></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>: Observation of the phenoxy radical, (C6H5O, X2A′)
journal, November 2007


Unimolecular Decomposition of the 2-Oxepinoxy Radical:  A Key Seven-Membered Ring Intermediate in the Thermal Oxidation of Benzene
journal, August 2000

  • Fadden, Michael J.; Hadad, Christopher M.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 34
  • DOI: 10.1021/jp0017238

Computational Study of the Oxygen Initiated Decomposition of 2-Oxepinoxy Radical:  A Key Intermediate in the Oxidation of Benzene
journal, October 2004

  • Merle, John K.; Hadad, Christopher M.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 40
  • DOI: 10.1021/jp047317w

High-temperature reactions of phenyl oxidation
journal, January 1994


Computational prediction of new mechanisms for the reactions of vinyl and phenyl radicals with molecular oxygen
journal, October 1993

  • Carpenter, Barry K.
  • Journal of the American Chemical Society, Vol. 115, Issue 21
  • DOI: 10.1021/ja00074a060

High temperature oxidation of aromatic hydrocarbons
journal, January 1982


Experimental and modeling study of the oxidation of 1-butyne and 2-butyne
journal, February 2002

  • Belmekki, N.; Glaude, P. A.; Da Costa, I.
  • International Journal of Chemical Kinetics, Vol. 34, Issue 3
  • DOI: 10.1002/kin.10035

Rate coefficients and product branching ratios for the oxidation of phenyl and naphthyl radicals: A theoretical RRKM-ME study
journal, January 2015

  • Kislov, V. V.; Singh, R. I.; Edwards, D. E.
  • Proceedings of the Combustion Institute, Vol. 35, Issue 2
  • DOI: 10.1016/j.proci.2014.06.135

Flash pyrolysis nozzle for generation of radicals in a supersonic jet expansion
journal, August 1992

  • Kohn, Daniel W.; Clauberg, Horst; Chen, Peter
  • Review of Scientific Instruments, Vol. 63, Issue 8
  • DOI: 10.1063/1.1143254

Vacuum Ultraviolet Photoionization of C3
journal, December 2005

  • Nicolas, Christophe; Shu, Jinian; Peterka, Darcy S.
  • Journal of the American Chemical Society, Vol. 128, Issue 1
  • DOI: 10.1021/ja055430+

A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C 6 H 5 ) with Propylene (C 3 H 6 ) in a High Temperature Chemical Reactor
journal, March 2012

  • Zhang, Fangtong; Kaiser, Ralf I.; Golan, Amir
  • The Journal of Physical Chemistry A, Vol. 116, Issue 14
  • DOI: 10.1021/jp300875s

A VUV Photoionization Study of the Formation of the Indene Molecule and Its Isomers
journal, June 2011

  • Zhang, Fangtong; Kaiser, Ralf I.; Kislov, Vadim V.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
  • DOI: 10.1021/jz200715u

The Phenoxyl Radical–Water Complex—A Matrix Isolation and Computational Study
journal, April 2012

  • Sander, Wolfram; Roy, Saonli; Polyak, Iakov
  • Journal of the American Chemical Society, Vol. 134, Issue 19
  • DOI: 10.1021/ja301528w

Absolute photoionization cross-sections of some combustion intermediates
journal, January 2012


Identification of C 5 H x Isomers in Fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculations
journal, April 2006

  • Hansen, Nils; Klippenstein, Stephen J.; Miller, James A.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 13
  • DOI: 10.1021/jp0569685

Photodissociation of Anisole and Absolute Photoionization Cross-Section of the Phenoxy Radical
journal, May 2013

  • Xu, Hong; Pratt, S. T.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 46
  • DOI: 10.1021/jp4047177

Photoionization cross sections for reaction intermediates in hydrocarbon combustion
journal, December 2005

  • Cool, Terrill A.; Wang, Juan; Nakajima, Koichi
  • International Journal of Mass Spectrometry, Vol. 247, Issue 1-3
  • DOI: 10.1016/j.ijms.2005.08.018

Product Detection of the CH Radical Reaction with Acetaldehyde
journal, January 2012

  • Goulay, Fabien; Trevitt, Adam J.; Savee, John D.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp2113126

The very low-pressure pyrolysis of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether and the enthalpy of formation of the phenoxy radical
journal, March 1977

  • Colussi, A. J.; Zabel, F.; Benson, S. W.
  • International Journal of Chemical Kinetics, Vol. 9, Issue 2
  • DOI: 10.1002/kin.550090202

Thermal decomposition of methyl phenyl ether in shock waves: the kinetics of phenoxy radical reactions
journal, January 1986

  • Lin, Chin-Yu; Lin, M. C.
  • The Journal of Physical Chemistry, Vol. 90, Issue 3
  • DOI: 10.1021/j100275a014

Reactions of phenoxy radicals in the gas phase
journal, January 1994


Ab Initio Study of the Mechanism for the Thermal Decomposition of the Phenoxy Radical
journal, January 1996

  • Liu, Ruifeng; Morokuma, Keiji; Mebel, Alexander M.
  • The Journal of Physical Chemistry, Vol. 100, Issue 22
  • DOI: 10.1021/jp953566w

Products of the Benzene + O( 3 P) Reaction
journal, March 2010

  • Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 9
  • DOI: 10.1021/jp9114145

Works referencing / citing this record:

Dehydro-oxazole, thiazole and imidazole radicals: insights into the electronic structure, stability and reactivity aspects
journal, January 2017

  • Mukhopadhyay, Anamika; Jacob, Lilit; Venkataramani, Sugumar
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 1
  • DOI: 10.1039/c6cp05677f

Enabling liquid vapor analysis using synchrotron VUV single photon ionization mass spectrometry with a microfluidic interface
journal, November 2018

  • Komorek, R.; Xu, B.; Yao, J.
  • Review of Scientific Instruments, Vol. 89, Issue 11
  • DOI: 10.1063/1.5048315

Product detection study of the gas-phase oxidation of methylphenyl radicals using synchrotron photoionisation mass spectrometry
journal, January 2019

  • Prendergast, Matthew B.; Kirk, Benjamin B.; Savee, John D.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 32
  • DOI: 10.1039/c9cp01935a