DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes

Abstract

In this work, we for the first time developed a novel lithium-containing crosslinked polymeric material, a lithicone that enables excellent protection effects over lithium (Li) metal anodes. This new lithicone was synthesized via an accurately controllable molecular layer deposition (MLD) process, in which lithium tert -butoxide (LTB) and glycerol (GL) were used as precursors. The resultant LiGL lithicone was analyzed using a suite of characterizations. Furthermore, we found that the LiGL thichicone could serve as an exceptional polymeric protection film over Li metal anodes. Our experimental data revealed that the Li electrodes coated by this LiGL lithicone can achieve a superior cycling stability, accounting for an extremely long cyclability of >13,600 Li-stripping/plating cycles and having no failures so far in Li/Li symmetric cells at a current density of 5 mA/cm 2 and an areal capacity of 1 mAh/cm 2 . We found that, with a sufficient protection by this LiGL coating, Li electrodes could realize long-term stable cyclability with little formation of Li dendrites and solid electrolyte interphase. This novel LiGL represents a facile and effective solution to the existing issues of Li anodes and potentially paves a technically feasible route for lithium metal batteries.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [1];  [4]; ORCiD logo [1]
  1. Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
  2. Department of Physics and Astronomy, California State University Northridge, CA 91330, USA
  3. Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
  4. Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1819246
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Energy Material Advances
Additional Journal Information:
Journal Name: Energy Material Advances Journal Volume: 2021; Journal ID: ISSN 2692-7640
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English

Citation Formats

Meng, Xiangbo, Lau, Kah Chun, Zhou, Hua, Ghosh, Sujan Kumar, Benamara, Mourad, and Zou, Min. Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes. United States: N. p., 2021. Web. doi:10.34133/2021/9786201.
Meng, Xiangbo, Lau, Kah Chun, Zhou, Hua, Ghosh, Sujan Kumar, Benamara, Mourad, & Zou, Min. Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes. United States. https://doi.org/10.34133/2021/9786201
Meng, Xiangbo, Lau, Kah Chun, Zhou, Hua, Ghosh, Sujan Kumar, Benamara, Mourad, and Zou, Min. Tue . "Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes". United States. https://doi.org/10.34133/2021/9786201.
@article{osti_1819246,
title = {Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes},
author = {Meng, Xiangbo and Lau, Kah Chun and Zhou, Hua and Ghosh, Sujan Kumar and Benamara, Mourad and Zou, Min},
abstractNote = {In this work, we for the first time developed a novel lithium-containing crosslinked polymeric material, a lithicone that enables excellent protection effects over lithium (Li) metal anodes. This new lithicone was synthesized via an accurately controllable molecular layer deposition (MLD) process, in which lithium tert -butoxide (LTB) and glycerol (GL) were used as precursors. The resultant LiGL lithicone was analyzed using a suite of characterizations. Furthermore, we found that the LiGL thichicone could serve as an exceptional polymeric protection film over Li metal anodes. Our experimental data revealed that the Li electrodes coated by this LiGL lithicone can achieve a superior cycling stability, accounting for an extremely long cyclability of >13,600 Li-stripping/plating cycles and having no failures so far in Li/Li symmetric cells at a current density of 5 mA/cm 2 and an areal capacity of 1 mAh/cm 2 . We found that, with a sufficient protection by this LiGL coating, Li electrodes could realize long-term stable cyclability with little formation of Li dendrites and solid electrolyte interphase. This novel LiGL represents a facile and effective solution to the existing issues of Li anodes and potentially paves a technically feasible route for lithium metal batteries.},
doi = {10.34133/2021/9786201},
journal = {Energy Material Advances},
number = ,
volume = 2021,
place = {United States},
year = {Tue Sep 07 00:00:00 EDT 2021},
month = {Tue Sep 07 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.34133/2021/9786201

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for High‐Performance Metallic Lithium Anode
journal, June 2020

  • Sun, Yipeng; Amirmaleki, Maedeh; Zhao, Yang
  • Advanced Energy Materials, Vol. 10, Issue 28
  • DOI: 10.1002/aenm.202001139

Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Next-Generation Battery Systems
journal, September 2019

  • Adair, Keegan R.; Zhao, Changtai; Banis, Mohammad Norouzi
  • Angewandte Chemie International Edition, Vol. 58, Issue 44
  • DOI: 10.1002/anie.201907759

Solution-Processed Alkaline Lithium Oxide Dielectrics for Applications in n- and p-Type Thin-Film Transistors
journal, July 2016

  • Liu, Ao; Liu, Guoxia; Zhu, Chundan
  • Advanced Electronic Materials, Vol. 2, Issue 9
  • DOI: 10.1002/aelm.201600140

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Projector augmented-wave method
journal, December 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Atomic and Molecular Layer Deposition for Superior Lithium-Sulfur Batteries: Strategies, Performance, and Mechanisms
journal, May 2018

  • Sun, Qian; Lau, Kah Chun; Geng, Dongsheng
  • Batteries & Supercaps, Vol. 1, Issue 2
  • DOI: 10.1002/batt.201800024

Atomic Layer Deposition of Li x Al y S Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes
journal, April 2016


Three dimensional porous frameworks for lithium dendrite suppression
journal, May 2020


Atomic and molecular layer deposition in pursuing better batteries
journal, January 2021


Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Mei, Donghai
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502151

A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator
journal, January 2018

  • Wen, Kaihua; Liu, Lili; Chen, Shimou
  • RSC Advances, Vol. 8, Issue 23
  • DOI: 10.1039/C8RA02140F

Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries
journal, January 2020

  • Zhang, Tengfei; He, Wenjie; Zhang, Wei
  • Chemical Science, Vol. 11, Issue 33
  • DOI: 10.1039/D0SC03121F

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries
journal, January 1999

  • Bar-Tow, D.
  • Journal of The Electrochemical Society, Vol. 146, Issue 3
  • DOI: 10.1149/1.1391688

Metalcones: Hybrid Organic–Inorganic Films Fabricated Using Atomic and Molecular Layer Deposition Techniques
journal, September 2011

  • George, Steven M.; Lee, Byoung H.; Yoon, Byunghoon
  • Journal of Nanoscience and Nanotechnology, Vol. 11, Issue 9
  • DOI: 10.1166/jnn.2011.5034

Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
journal, October 2018

  • Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier
  • Angewandte Chemie International Edition, Vol. 57, Issue 46
  • DOI: 10.1002/anie.201712702

A Novel Organic “Polyurea” Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition
journal, December 2018


XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts
journal, May 1995


Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


The Reactivity of Linear Alkyl Carbonates toward Metallic Lithium
journal, January 2002

  • Rendek, Louis J.; Chottiner, Gary S.; Scherson, Daniel A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1507595

Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries
journal, December 2020


Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Importance of Trimethylaluminum Diffusion in Three-Step ABC Molecular Layer Deposition Using Trimethylaluminum, Ethanolamine, and Maleic Anhydride
journal, December 2010

  • Seghete, Dragos; Hall, Robert A.; Yoon, Byunghoon
  • Langmuir, Vol. 26, Issue 24
  • DOI: 10.1021/la102649x

Elastic, plastic, and creep mechanical properties of lithium metal
journal, October 2018

  • Masias, Alvaro; Felten, Nando; Garcia-Mendez, Regina
  • Journal of Materials Science, Vol. 54, Issue 3
  • DOI: 10.1007/s10853-018-2971-3

XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction
journal, August 2018


Atomic Layer Deposition of Aluminum Sulfide: Growth Mechanism and Electrochemical Evaluation in Lithium-Ion Batteries
journal, October 2017


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution
journal, December 2016

  • Zhou, Xinguang; Zhang, Yinglu; Huang, Zuteng
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38417

Formulating the Electrolyte Towards High‐Energy and Safe Rechargeable Lithium–Metal Batteries
journal, June 2021

  • Ma, Qiang; Yue, Junpei; Fan, Min
  • Angewandte Chemie International Edition, Vol. 60, Issue 30
  • DOI: 10.1002/anie.202103850

Artificial Interphases for Highly Stable Lithium Metal Anode
journal, August 2019


Robust Metallic Lithium Anode Protection by the Molecular-Layer-Deposition Technique
journal, March 2018


Protective coatings for lithium metal anodes: Recent progress and future perspectives
journal, February 2020


Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li–S Batteries with High Sulfur Mass Loading
journal, February 2018

  • Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 8
  • DOI: 10.1021/acsami.7b15879

A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors
journal, December 2018


PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries
journal, March 2020


Atomic layer deposition of zirconium oxide thin films
journal, November 2019

  • Wang, Xin; Ghosh, Sujan Kumar; Afshar-Mohajer, Mahyar
  • Journal of Materials Research, Vol. 35, Issue 7
  • DOI: 10.1557/jmr.2019.338

Li-Containing Organic Thin Film—Structure of Lithium Propane Dioxide via Molecular Layer Deposition
journal, February 2020

  • Wang, Haotian; Gregorczyk, Keith E.; Lee, Sang Bok
  • The Journal of Physical Chemistry C, Vol. 124, Issue 12
  • DOI: 10.1021/acs.jpcc.9b11868