DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

Abstract

Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10-7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solidmore » state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

Authors:
ORCiD logo [1];  [1];  [2];  [2];  [1];  [3];  [4]; ORCiD logo [2];  [1];  [1]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  3. Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab., Dept. of Research and Exploratory Development
  4. American Society for Engineering Education, Washington, DC (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1360797
Report Number(s):
SAND-2017-2069J
Journal ID: ISSN 0897-4756; 651195
Grant/Contract Number:  
AC04-94AL85000; SC0001160
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 8; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Atomic layer deposition; solid state battery; solid state electrolyte; LiPON; thin film; energy storage; flexible

Citation Formats

Pearse, Alexander J., Schmitt, Thomas E., Fuller, Elliot J., El-Gabaly, Farid, Lin, Chuan-Fu, Gerasopoulos, Konstantinos, Kozen, Alexander C., Talin, A. Alec, Rubloff, Gary, and Gregorczyk, Keith E.. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00805.
Pearse, Alexander J., Schmitt, Thomas E., Fuller, Elliot J., El-Gabaly, Farid, Lin, Chuan-Fu, Gerasopoulos, Konstantinos, Kozen, Alexander C., Talin, A. Alec, Rubloff, Gary, & Gregorczyk, Keith E.. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte. United States. https://doi.org/10.1021/acs.chemmater.7b00805
Pearse, Alexander J., Schmitt, Thomas E., Fuller, Elliot J., El-Gabaly, Farid, Lin, Chuan-Fu, Gerasopoulos, Konstantinos, Kozen, Alexander C., Talin, A. Alec, Rubloff, Gary, and Gregorczyk, Keith E.. Mon . "Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte". United States. https://doi.org/10.1021/acs.chemmater.7b00805. https://www.osti.gov/servlets/purl/1360797.
@article{osti_1360797,
title = {Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte},
author = {Pearse, Alexander J. and Schmitt, Thomas E. and Fuller, Elliot J. and El-Gabaly, Farid and Lin, Chuan-Fu and Gerasopoulos, Konstantinos and Kozen, Alexander C. and Talin, A. Alec and Rubloff, Gary and Gregorczyk, Keith E.},
abstractNote = {Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10-7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.},
doi = {10.1021/acs.chemmater.7b00805},
journal = {Chemistry of Materials},
number = 8,
volume = 29,
place = {United States},
year = {Mon Apr 10 00:00:00 EDT 2017},
month = {Mon Apr 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 97 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A solid future for battery development
journal, September 2016


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Lithium-Ion Batteries: Solid Electrolyte: the Key for High-Voltage Lithium Batteries (Adv. Energy Mater. 4/2015)
journal, February 2015

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201570018

An all-solid state NASICON sodium battery operating at 200 °C
journal, February 2014


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes
journal, July 2012

  • Qian, Danna; Xu, Bo; Cho, Hyung-Man
  • Chemistry of Materials, Vol. 24, Issue 14
  • DOI: 10.1021/cm300929r

A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte
journal, February 2014


Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes
journal, March 2014


Solid-state thin-film rechargeable batteries
journal, February 2005


Thin film Li electrolytes for all-solid-state micro-batteries
journal, January 2009

  • Xia, Hui; Wang, Hai Long; Xiao, Wei
  • International Journal of Surface Science and Engineering, Vol. 3, Issue 1/2
  • DOI: 10.1504/IJSURFSE.2009.024360

Three-Dimensional Battery Architectures
journal, October 2004

  • Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4463-4492
  • DOI: 10.1021/cr020740l

All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts
journal, November 2010

  • Oudenhoven, Jos F. M.; Baggetto, Loïc.; Notten, Peter H. L.
  • Advanced Energy Materials, Vol. 1, Issue 1
  • DOI: 10.1002/aenm.201000002

Finite element modelling of ion transport in the electrolyte of a 3D-microbattery
journal, June 2011


Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries
journal, December 2011

  • Ruzmetov, Dmitry; Oleshko, Vladimir P.; Haney, Paul M.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl204047z

Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries
journal, November 2016

  • Talin, A. Alec; Ruzmetov, Dmitry; Kolmakov, Andrei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 47
  • DOI: 10.1021/acsami.6b12244

Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries
journal, April 2010

  • Jung, Yoon Seok; Cavanagh, Andrew S.; Riley, Leah A.
  • Advanced Materials, Vol. 22, Issue 19
  • DOI: 10.1002/adma.200903951

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Atomic Layer Deposition of Li 2 O–Al 2 O 3 Thin Films
journal, November 2011

  • Aaltonen, Titta; Nilsen, Ola; Magrasó, Anna
  • Chemistry of Materials, Vol. 23, Issue 21
  • DOI: 10.1021/cm200899k

Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes
journal, September 2013

  • Liu, Jian; Banis, Mohammad N.; Li, Xifei
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp4063302

Synthesis of ion conducting Li x Al y Si z O thin films by atomic layer deposition
journal, January 2014

  • Perng, Ya-Chuan; Cho, Jea; Sun, Steven Y.
  • J. Mater. Chem. A, Vol. 2, Issue 25
  • DOI: 10.1039/C3TA14928E

Atomic layer deposition of ferroelectric LiNbO 3
journal, January 2013

  • Østreng, Erik; Sønsteby, Henrik H.; Sajavaara, Timo
  • J. Mater. Chem. C, Vol. 1, Issue 27
  • DOI: 10.1039/C3TC30271G

Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition
journal, January 2010

  • Aaltonen, Titta; Alnes, Mari; Nilsen, Ola
  • Journal of Materials Chemistry, Vol. 20, Issue 14
  • DOI: 10.1039/b923490j

Atomic Layer Deposition of Li x Al y S Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes
journal, April 2016


A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes
journal, June 2014

  • Li, Juchuan; Dudney, Nancy J.; Nanda, Jagjit
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am5009419

Lithium Phosphate Thin Films Grown by Atomic Layer Deposition
journal, January 2012

  • Hämäläinen, Jani; Holopainen, Jani; Munnik, Frans
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.052203jes

Atomic Layer Deposition of the Solid Electrolyte LiPON
journal, July 2015


Atomic Layer Deposition of Lithium Phosphorus Oxynitride
journal, October 2015


Thermal Atomic Layer Deposition of Lithium Phosphorus Oxynitride as a Thin-Film Solid Electrolyte
journal, January 2016

  • Shibata, Satoshi
  • Journal of The Electrochemical Society, Vol. 163, Issue 13
  • DOI: 10.1149/2.0371613jes

An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions
journal, August 2000


Lipon thin films grown by plasma-enhanced metalorganic chemical vapor deposition in a N2–H2–Ar gas mixture
journal, January 2012


Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 μm thick LiCoO2
journal, June 2003


Plasma - Assisted ALD of Lipo(N) for Solid State Batteries
journal, January 2017

  • Put, Brecht; Mees, Maarten J.; Hornsveld, Norah
  • ECS Transactions, Vol. 75, Issue 20
  • DOI: 10.1149/07520.0061ecst

In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition
journal, March 2009


Organic and inorganic–organic thin film structures by molecular layer deposition: A review
journal, January 2014

  • Sundberg, Pia; Karppinen, Maarit
  • Beilstein Journal of Nanotechnology, Vol. 5
  • DOI: 10.3762/bjnano.5.123

Atomic Layer Deposition and in Situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide
journal, November 2014

  • Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan-Fu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 48
  • DOI: 10.1021/jp509298r

First-principles study of LiPON and related solid electrolytes
journal, May 2010


Phosphate structure and lithium environments in lithium phosphorus oxynitride amorphous thin films
journal, October 2015


Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance
journal, March 2011


Electrical Characterization of Ultrathin RF-Sputtered LiPON Layers for Nanoscale Batteries
journal, March 2016

  • Put, Brecht; Vereecken, Philippe M.; Meersschaut, Johan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 11
  • DOI: 10.1021/acsami.5b12500

A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure
journal, February 2013


Polyphosphazene electrolytes for lithium batteries
journal, May 1989

  • Nazri, Gholamabbas; MacArthur, Donald M.; Ogara, John F.
  • Chemistry of Materials, Vol. 1, Issue 3
  • DOI: 10.1021/cm00003a019

Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries
journal, May 2014


Side-chain poly(phosphoramidate)s via acyclic diene metathesis polycondensation
journal, January 2016

  • Cankaya, Alper; Steinmann, Mark; Bülbül, Yagmur
  • Polymer Chemistry, Vol. 7, Issue 31
  • DOI: 10.1039/C6PY00999A

The Formation of P-N and P-N-P Bonds by Elimination of Phenol in a Basic Condensation
journal, December 1964


Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition
journal, June 2014

  • Atanasov, Sarah E.; Losego, Mark D.; Gong, Bo
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm500825b

On the physical interpretation of constant phase elements
journal, June 2009

  • Shoar Abouzari, M. R.; Berkemeier, F.; Schmitz, G.
  • Solid State Ionics, Vol. 180, Issue 14-16
  • DOI: 10.1016/j.ssi.2009.04.002

The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Characterization of Thin-Film Lithium Batteries with Stable Thin-Film Li[sub 3]PO[sub 4] Solid Electrolytes Fabricated by ArF Excimer Laser Deposition
journal, January 2010

  • Kuwata, Naoaki; Iwagami, Naoya; Tanji, Yoshinari
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3306339

Fabrication of Nanoporous Pt by Electrochemical Alloying and Dealloying with Li
journal, January 2013

  • Nishio, K.; Yoshida, M.; Masuda, H.
  • ECS Electrochemistry Letters, Vol. 2, Issue 11
  • DOI: 10.1149/2.007311eel

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

High-Performance All-Solid-State Cells Fabricated With Silicon Electrodes
journal, March 2012

  • Phan, Viet Phong; Pecquenard, Brigitte; Le Cras, Frédéric
  • Advanced Functional Materials, Vol. 22, Issue 12
  • DOI: 10.1002/adfm.201200104

All-Solid-State Lithium-Ion Microbatteries Using Silicon Nanofilm Anodes: High Performance and Memory Effect
journal, July 2015

  • Cras, Frédéric Le; Pecquenard, Brigitte; Dubois, Vincent
  • Advanced Energy Materials, Vol. 5, Issue 19
  • DOI: 10.1002/aenm.201501061

High-Voltage Cycling Behavior of Thin-Film LiCoO[sub 2] Cathodes
journal, January 2002

  • Jang, Young-Il; Dudney, Nancy J.; Blom, Douglas A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 11
  • DOI: 10.1149/1.1511751

Ultra-thin LiPON films – Fundamental properties and application in solid state thin film model batteries
journal, February 2015


Stability of Thin-Film Lithium-Ion Rechargeable Batteries Fabricated by Sputtering Method without Heating
journal, December 2014

  • Nakazawa, Hiromi; Sano, Kimihiro; Baba, Mamoru
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0491503jes

Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage
journal, January 2013

  • Chen, Xinyi; Pomerantseva, Ekaterina; Gregorczyk, Keith
  • RSC Advances, Vol. 3, Issue 13
  • DOI: 10.1039/c3ra23031g

An all-in-one nanopore battery array
journal, November 2014

  • Liu, Chanyuan; Gillette, Eleanor I.; Chen, Xinyi
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.247

Works referencing / citing this record:

Advances in 3D Thin‐Film Li‐Ion Batteries
journal, June 2019

  • Moitzheim, Sébastien; Put, Brecht; Vereecken, Philippe M.
  • Advanced Materials Interfaces, Vol. 6, Issue 15
  • DOI: 10.1002/admi.201900805

Organic electrode materials with solid-state battery technology
journal, January 2019

  • Heiska, Juho; Nisula, Mikko; Karppinen, Maarit
  • Journal of Materials Chemistry A, Vol. 7, Issue 32
  • DOI: 10.1039/c9ta04328d

Kinetics‐Controlled Degradation Reactions at Crystalline LiPON/Li x CoO 2 and Crystalline LiPON/Li‐Metal Interfaces
journal, March 2018

  • Leung, Kevin; Pearse, Alexander J.; Talin, A. Alec
  • ChemSusChem, Vol. 11, Issue 12
  • DOI: 10.1002/cssc.201800027

Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density
journal, January 2018

  • Wang, Longlong; Chen, Bingbing; Ma, Jun
  • Chemical Society Reviews, Vol. 47, Issue 17
  • DOI: 10.1039/c8cs00322j

Atomic layer deposition and first principles modeling of glassy Li 3 BO 3 –Li 2 CO 3 electrolytes for solid-state Li metal batteries
journal, January 2018

  • Kazyak, Eric; Chen, Kuan-Hung; Davis, Andrew L.
  • Journal of Materials Chemistry A, Vol. 6, Issue 40
  • DOI: 10.1039/c8ta08761j

Reducing the Interfacial Resistance in All‐Solid‐State Lithium Batteries Based on Oxide Ceramic Electrolytes
journal, April 2019


Computational investigation of a promising Si–Cu anode material
journal, January 2019

  • Galashev, Alexander Y.; Ivanichkina, Ksenia A.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 23
  • DOI: 10.1039/c9cp01571j

Energy storage: The future enabled by nanomaterials
journal, November 2019

  • Pomerantseva, Ekaterina; Bonaccorso, Francesco; Feng, Xinliang
  • Science, Vol. 366, Issue 6468
  • DOI: 10.1126/science.aan8285

Ni–Al–Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries
journal, January 2018

  • Filippin, Alejandro N.; Lin, Tzu-Ying; Rawlence, Michael
  • RSC Advances, Vol. 8, Issue 36
  • DOI: 10.1039/c8ra02461h

Probing ion current in solid-electrolytes at the meso- and nanoscale
journal, January 2018

  • Martinez, Joseph; Ashby, David; Zhu, Cheng
  • Faraday Discussions, Vol. 210
  • DOI: 10.1039/c8fd00071a

In situ lithiated quinone cathode for ALD/MLD-fabricated high-power thin-film battery
journal, January 2018

  • Nisula, Mikko; Karppinen, Maarit
  • Journal of Materials Chemistry A, Vol. 6, Issue 16
  • DOI: 10.1039/c8ta00804c

Atomic layer deposition of functional multicomponent oxides
journal, November 2019


Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes
journal, January 2018

  • Chen, Shimou; Wen, Kaihua; Fan, Juntian
  • Journal of Materials Chemistry A, Vol. 6, Issue 25
  • DOI: 10.1039/c8ta03358g

Advances on Microsized On-Chip Lithium-Ion Batteries
journal, September 2017


Tape‐Casting Li 0.34 La 0.56 TiO 3 Ceramic Electrolyte Films Permit High Energy Density of Lithium‐Metal Batteries
journal, November 2019

  • Jiang, Zhouyang; Wang, Suqing; Chen, Xinzhi
  • Advanced Materials, Vol. 32, Issue 6
  • DOI: 10.1002/adma.201906221

New development of atomic layer deposition: processes, methods and applications
journal, May 2019

  • Oviroh, Peter Ozaveshe; Akbarzadeh, Rokhsareh; Pan, Dongqing
  • Science and Technology of Advanced Materials, Vol. 20, Issue 1
  • DOI: 10.1080/14686996.2019.1599694

Scope of surface-modified molecular and nanomaterials in gel/liquid forms for developing mechanically flexible DSSCs/QDSSCs
journal, January 2019

  • Sasi, Soorya; Sugunan, Sunish K.; Radhakrishnan Nair, P.
  • Photochemical & Photobiological Sciences, Vol. 18, Issue 1
  • DOI: 10.1039/c8pp00293b

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films
journal, January 2019

  • Kundrata, Ivan; Fröhlich, Karol; Vančo, Lubomír
  • Beilstein Journal of Nanotechnology, Vol. 10
  • DOI: 10.3762/bjnano.10.142

Computer Test of a New Silicene Anode for Lithium‐Ion Batteries
journal, January 2019


Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries
text, January 2018


Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries
journal, September 2017

  • van den Ham, Evert; Maino, Giulia; Bonneux, Gilles
  • Materials, Vol. 10, Issue 9
  • DOI: 10.3390/ma10091072

Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries
journal, October 2017


Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films
journal, January 2019

  • Kundrata, Ivan; Fröhlich, Karol; Vančo, Lubomír
  • Beilstein Journal of Nanotechnology, Vol. 10
  • DOI: 10.3762/bjnano.10.142