DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Latitude Stratospheric Aerosol Geoengineering Can Be More Effective if Injection Is Limited to Spring

Abstract

Stratospheric aerosol geoengineering focused on the Arctic could substantially reduce local and worldwide impacts of anthropogenic global warming. Because the Arctic receives little sunlight during the winter, stratospheric aerosols present in the winter at high latitudes have little impact on the climate, whereas stratospheric aerosols present during the summer achieve larger changes in radiative forcing. Injecting SO2 in the spring leads to peak aerosol optical depth (AOD) in the summer. We demonstrate that spring injection produces approximately twice as much summer AOD as year-round injection and restores approximately twice as much September sea ice, resulting in less increase in stratospheric sulfur burden, stratospheric heating, and stratospheric ozone depletion per unit of sea ice restored. Furthermore, we also find that differences in AOD between different seasonal injection strategies are small compared to the difference between annual and spring injection.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Indiana Univ., Bloomington, IN (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1811261
Alternate Identifier(s):
OSTI ID: 1811262
Report Number(s):
PNNL-SA-161397
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
AC05-76RL01830; CBET-1818759; CBET-1931641
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 48; Journal Issue: 9; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Arctic sea ice; geoengineering; stratospheric aerosol injection

Citation Formats

Lee, Walker Raymond, MacMartin, Douglas G., Visioni, Daniele, and Kravitz, Ben. High-Latitude Stratospheric Aerosol Geoengineering Can Be More Effective if Injection Is Limited to Spring. United States: N. p., 2021. Web. doi:10.1029/2021gl092696.
Lee, Walker Raymond, MacMartin, Douglas G., Visioni, Daniele, & Kravitz, Ben. High-Latitude Stratospheric Aerosol Geoengineering Can Be More Effective if Injection Is Limited to Spring. United States. https://doi.org/10.1029/2021gl092696
Lee, Walker Raymond, MacMartin, Douglas G., Visioni, Daniele, and Kravitz, Ben. Mon . "High-Latitude Stratospheric Aerosol Geoengineering Can Be More Effective if Injection Is Limited to Spring". United States. https://doi.org/10.1029/2021gl092696. https://www.osti.gov/servlets/purl/1811261.
@article{osti_1811261,
title = {High-Latitude Stratospheric Aerosol Geoengineering Can Be More Effective if Injection Is Limited to Spring},
author = {Lee, Walker Raymond and MacMartin, Douglas G. and Visioni, Daniele and Kravitz, Ben},
abstractNote = {Stratospheric aerosol geoengineering focused on the Arctic could substantially reduce local and worldwide impacts of anthropogenic global warming. Because the Arctic receives little sunlight during the winter, stratospheric aerosols present in the winter at high latitudes have little impact on the climate, whereas stratospheric aerosols present during the summer achieve larger changes in radiative forcing. Injecting SO2 in the spring leads to peak aerosol optical depth (AOD) in the summer. We demonstrate that spring injection produces approximately twice as much summer AOD as year-round injection and restores approximately twice as much September sea ice, resulting in less increase in stratospheric sulfur burden, stratospheric heating, and stratospheric ozone depletion per unit of sea ice restored. Furthermore, we also find that differences in AOD between different seasonal injection strategies are small compared to the difference between annual and spring injection.},
doi = {10.1029/2021gl092696},
journal = {Geophysical Research Letters},
number = 9,
volume = 48,
place = {United States},
year = {Mon May 03 00:00:00 EDT 2021},
month = {Mon May 03 00:00:00 EDT 2021}
}

Works referenced in this record:

Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet
journal, June 2017

  • Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier
  • Science Advances, Vol. 3, Issue 6
  • DOI: 10.1126/sciadv.1700584

Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall
journal, March 2013

  • Haywood, Jim M.; Jones, Andy; Bellouin, Nicolas
  • Nature Climate Change, Vol. 3, Issue 7
  • DOI: 10.1038/nclimate1857

Thermodynamic and dynamic responses of the hydrological cycle to solar dimming
journal, January 2017

  • Smyth, Jane E.; Russotto, Rick D.; Storelvmo, Trude
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 10
  • DOI: 10.5194/acp-17-6439-2017

Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world: ARCTIC SEA ICE TRENDS IN A WARMING WORLD
journal, August 2011

  • Kay, Jennifer E.; Holland, Marika M.; Jahn, Alexandra
  • Geophysical Research Letters, Vol. 38, Issue 15
  • DOI: 10.1029/2011GL048008

Decline of Arctic sea ice: Evaluation and weighting of CMIP5 projections: DECLINE OF ARCTIC SEA ICE
journal, January 2014

  • Snape, Thomas J.; Forster, Piers M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 2
  • DOI: 10.1002/2013JD020593

What goes up must come down: impacts of deposition in a sulfate geoengineering scenario
journal, September 2020

  • Visioni, Daniele; Slessarev, Eric; MacMartin, Douglas G.
  • Environmental Research Letters, Vol. 15, Issue 9
  • DOI: 10.1088/1748-9326/ab94eb

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Stratospheric Sulfate Aerosol Geoengineering Could Alter the High‐Latitude Seasonal Cycle
journal, December 2019

  • Jiang, Jiu; Cao, Long; MacMartin, Douglas G.
  • Geophysical Research Letters, Vol. 46, Issue 23
  • DOI: 10.1029/2019GL085758

Quality control for community-based sea-ice model development
journal, August 2018

  • Roberts, Andrew F.; Hunke, Elizabeth C.; Allard, Richard
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2129
  • DOI: 10.1098/rsta.2017.0344

Changing state of Arctic sea ice across all seasons
journal, September 2018


Seasonally Modulated Stratospheric Aerosol Geoengineering Alters the Climate Outcomes
journal, June 2020

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Geophysical Research Letters, Vol. 47, Issue 12
  • DOI: 10.1029/2020GL088337

Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Reduced Poleward Transport Due to Stratospheric Heating Under Stratospheric Aerosols Geoengineering
journal, September 2020

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Geophysical Research Letters, Vol. 47, Issue 17
  • DOI: 10.1029/2020GL089470

Observational determination of albedo decrease caused by vanishing Arctic sea ice
journal, February 2014

  • Pistone, Kristina; Eisenman, Ian; Ramanathan, V.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1318201111

Patterns of Sea Ice Retreat in the Transition to a Seasonally Ice-Free Arctic
journal, October 2016

  • DeRepentigny, Patricia; Tremblay, L. Bruno; Newton, Robert
  • Journal of Climate, Vol. 29, Issue 19
  • DOI: 10.1175/JCLI-D-15-0733.1

Paris Agreement climate proposals need a boost to keep warming well below 2 °C
journal, June 2016

  • Rogelj, Joeri; den Elzen, Michel; Höhne, Niklas
  • Nature, Vol. 534, Issue 7609
  • DOI: 10.1038/nature18307

Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs
journal, January 2020

  • Lee, Walker; MacMartin, Douglas; Visioni, Daniele
  • Earth System Dynamics, Vol. 11, Issue 4
  • DOI: 10.5194/esd-11-1051-2020

Physics of Climate
journal, August 1992

  • Peixoto, José P.; Oort, Abraham H.; Covey, Curt
  • Physics Today, Vol. 45, Issue 8
  • DOI: 10.1063/1.2809772

Effects of Different Stratospheric SO 2 Injection Altitudes on Stratospheric Chemistry and Dynamics
journal, May 2018

  • Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 9
  • DOI: 10.1002/2017JD028146

Albedo evolution of seasonal Arctic sea ice: ALEDO EVOLUTION OF SEASONAL SEA ICE
journal, April 2012

  • Perovich, Donald K.; Polashenski, Christopher
  • Geophysical Research Letters, Vol. 39, Issue 8
  • DOI: 10.1029/2012GL051432

Can regional climate engineering save the summer Arctic sea ice?: TILMES ET AL.
journal, February 2014

  • Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.
  • Geophysical Research Letters, Vol. 41, Issue 3
  • DOI: 10.1002/2013GL058731

Observed Arctic sea-ice loss directly follows anthropogenic CO 2 emission
journal, November 2016


Variability of Arctic Sea Ice Thickness Using PIOMAS and the CESM Large Ensemble
journal, April 2018


Temporal Means and Variability of Arctic Sea Ice Melt and Freeze Season Climate Indicators Using a Satellite Climate Data Record
journal, August 2018

  • Peng, Ge; Steele, Michael; Bliss, Angela
  • Remote Sensing, Vol. 10, Issue 9
  • DOI: 10.3390/rs10091328

Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering?
journal, March 2021

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 5
  • DOI: 10.1029/2020JD033952

Advantages of the latest Los Alamos Sea-Ice Model (CICE): evaluation of the simulated spatiotemporal variation of Arctic sea ice
journal, January 2020


Greenland Ice Sheet Response to Stratospheric Aerosol Injection Geoengineering
journal, December 2019


Regional climate responses to geoengineering with tropical and Arctic SO 2 injections
journal, January 2008

  • Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.
  • Journal of Geophysical Research, Vol. 113, Issue D16
  • DOI: 10.1029/2008JD010050

How predictable is the timing of a summer ice-free Arctic?: PREDICTING A SUMMER ICE-FREE ARCTIC
journal, September 2016

  • Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika M.
  • Geophysical Research Letters, Vol. 43, Issue 17
  • DOI: 10.1002/2016GL070067

Global monsoon response to tropical and Arctic stratospheric aerosol injection
journal, July 2020


CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project
journal, November 2018

  • Tilmes, Simone; Richter, Jadwiga H.; Kravitz, Ben
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 11
  • DOI: 10.1175/BAMS-D-17-0267.1

Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering: Arctic sea ice geoengineering
journal, February 2015

  • Jackson, L. S.; Crook, J. A.; Jarvis, A.
  • Geophysical Research Letters, Vol. 42, Issue 4
  • DOI: 10.1002/2014GL062240

Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS
journal, March 2016

  • Mills, Michael J.; Schmidt, Anja; Easter, Richard
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 5
  • DOI: 10.1002/2015JD024290

Nonuniform Contribution of Internal Variability to Recent Arctic Sea Ice Loss
journal, July 2019


The Total Meridional Heat Flux and Its Oceanic and Atmospheric Partition
journal, November 2005


Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering
journal, January 2018

  • Dai, Z.; Weisenstein, D. K.; Keith, D. W.
  • Geophysical Research Letters, Vol. 45, Issue 2
  • DOI: 10.1002/2017GL076472

The Seasonal and Regional Transition to an Ice‐Free Arctic
journal, January 2021

  • Årthun, Marius; Onarheim, Ingrid H.; Dörr, Jakob
  • Geophysical Research Letters, Vol. 48, Issue 1
  • DOI: 10.1029/2020GL090825

Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations
journal, January 2020

  • DuVivier, Alice K.; DeRepentigny, Patricia; Holland, Marika M.
  • The Cryosphere, Vol. 14, Issue 4
  • DOI: 10.5194/tc-14-1259-2020

Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols
journal, January 2015

  • Ferraro, A. J.; Charlton-Perez, A. J.; Highwood, E. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 2
  • DOI: 10.1002/2014JD022734

Mapping the future expansion of Arctic open water
journal, November 2015

  • Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina
  • Nature Climate Change, Vol. 6, Issue 3
  • DOI: 10.1038/nclimate2848

Contributions of Ice Thickness to the Atmospheric Response From Projected Arctic Sea Ice Loss
journal, June 2018

  • Labe, Zachary; Peings, Yannick; Magnusdottir, Gudrun
  • Geophysical Research Letters, Vol. 45, Issue 11
  • DOI: 10.1029/2018GL078158

Climate response to imposed solar radiation reductions in high latitudes
journal, January 2013

  • MacCracken, M. C.; Shin, H. -J.; Caldeira, K.
  • Earth System Dynamics, Vol. 4, Issue 2
  • DOI: 10.5194/esd-4-301-2013

The Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2011

  • Kravitz, Ben; Robock, Alan; Boucher, Olivier
  • Atmospheric Science Letters, Vol. 12, Issue 2
  • DOI: 10.1002/asl.316

Persistent polar ocean warming in a strategically geoengineered climate
journal, October 2018


Global and Arctic climate engineering: numerical model studies
journal, August 2008

  • Caldeira, Ken; Wood, Lowell
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 366, Issue 1882
  • DOI: 10.1098/rsta.2008.0132

Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength
journal, August 2018

  • Byrne, Michael P.; Pendergrass, Angeline G.; Rapp, Anita D.
  • Current Climate Change Reports, Vol. 4, Issue 4
  • DOI: 10.1007/s40641-018-0110-5

Geoengineering as a design problem
journal, January 2016

  • Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
  • Earth System Dynamics, Vol. 7, Issue 2
  • DOI: 10.5194/esd-7-469-2016

Observations reveal external driver for Arctic sea-ice retreat: OBSERVATIONAL RECORD OF SEA-ICE RETREAT
journal, April 2012

  • Notz, Dirk; Marotzke, Jochem
  • Geophysical Research Letters, Vol. 39, Issue 8
  • DOI: 10.1029/2012GL051094

Influence of Arctic stratospheric ozone on surface climate in CCMI models
journal, January 2019

  • Harari, Ohad; Garfinkel, Chaim I.; Ziskin Ziv, Shlomi
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
  • DOI: 10.5194/acp-19-9253-2019

The Arctic’s rapidly shrinking sea ice cover: a research synthesis
journal, June 2011

  • Stroeve, Julienne C.; Serreze, Mark C.; Holland, Marika M.
  • Climatic Change, Vol. 110, Issue 3-4
  • DOI: 10.1007/s10584-011-0101-1

Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
journal, January 2020

  • Tilmes, Simone; MacMartin, Douglas G.; Lenaerts, Jan T. M.
  • Earth System Dynamics, Vol. 11, Issue 3
  • DOI: 10.5194/esd-11-579-2020