DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations

Abstract

We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significantmore » differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (–3.79 ± 0.76 % for G6sulfur compared to –2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [3];  [5]; ORCiD logo [6];  [5]; ORCiD logo [7]; ORCiD logo [5]; ORCiD logo [6]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Indiana Univ., Bloomington, IN (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Sorbonne Univ., Paris (France)
  4. Met Office Hadley Centre, Exeter (United Kingdom)
  5. Univ. of Toulouse (France)
  6. National Center for Atmospheric Research, Boulder, CO (United States)
  7. Max Planck Institute for Meterology, Hamburg (Germany)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); European Research Council (ERC); French National Research Agency (ANR)
OSTI Identifier:
1819883
Report Number(s):
PNNL-SA-160602
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC05-76RL01830; CBET-1818759; CBET-1931641; 11-IDEX-0004-17-EURE-0006; 820829
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 21; Journal Issue: 13; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Visioni, Daniele, MacMartin, Douglas G., Kravitz, Ben, Boucher, Olivier, Jones, Andy, Lurton, Thibaut, Martine, Michou, Mills, Michael J., Nabat, Pierre, Niemeier, Ulrike, Séférian, Roland, and Tilmes, Simone. Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations. United States: N. p., 2021. Web. doi:10.5194/acp-21-10039-2021.
Visioni, Daniele, MacMartin, Douglas G., Kravitz, Ben, Boucher, Olivier, Jones, Andy, Lurton, Thibaut, Martine, Michou, Mills, Michael J., Nabat, Pierre, Niemeier, Ulrike, Séférian, Roland, & Tilmes, Simone. Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations. United States. https://doi.org/10.5194/acp-21-10039-2021
Visioni, Daniele, MacMartin, Douglas G., Kravitz, Ben, Boucher, Olivier, Jones, Andy, Lurton, Thibaut, Martine, Michou, Mills, Michael J., Nabat, Pierre, Niemeier, Ulrike, Séférian, Roland, and Tilmes, Simone. Tue . "Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations". United States. https://doi.org/10.5194/acp-21-10039-2021. https://www.osti.gov/servlets/purl/1819883.
@article{osti_1819883,
title = {Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations},
author = {Visioni, Daniele and MacMartin, Douglas G. and Kravitz, Ben and Boucher, Olivier and Jones, Andy and Lurton, Thibaut and Martine, Michou and Mills, Michael J. and Nabat, Pierre and Niemeier, Ulrike and Séférian, Roland and Tilmes, Simone},
abstractNote = {We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (–3.79 ± 0.76 % for G6sulfur compared to –2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures.},
doi = {10.5194/acp-21-10039-2021},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 13,
volume = 21,
place = {United States},
year = {Tue Jul 06 00:00:00 EDT 2021},
month = {Tue Jul 06 00:00:00 EDT 2021}
}

Works referenced in this record:

High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2)
journal, July 2019

  • Gettelman, A.; Hannay, C.; Bacmeister, J. T.
  • Geophysical Research Letters, Vol. 46, Issue 14
  • DOI: 10.1029/2019GL083978

Stratospheric Sulfate Aerosol Geoengineering Could Alter the High‐Latitude Seasonal Cycle
journal, December 2019

  • Jiang, Jiu; Cao, Long; MacMartin, Douglas G.
  • Geophysical Research Letters, Vol. 46, Issue 23
  • DOI: 10.1029/2019GL085758

Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
journal, January 2020

  • Arora, Vivek K.; Katavouta, Anna; Williams, Richard G.
  • Biogeosciences, Vol. 17, Issue 16
  • DOI: 10.5194/bg-17-4173-2020

Forcing Dependence of Atmospheric Lapse Rate Changes Dominates Residual Polar Warming in Solar Radiation Management Climate Scenarios
journal, August 2020

  • Henry, Matthew; Merlis, Timothy M.
  • Geophysical Research Letters, Vol. 47, Issue 15
  • DOI: 10.1029/2020GL087929

An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling
journal, January 2013

  • Canty, T.; Mascioli, N. R.; Smarte, M. D.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 8
  • DOI: 10.5194/acp-13-3997-2013

Changes in West African Summer Monsoon Precipitation Under Stratospheric Aerosol Geoengineering
journal, July 2020

  • Da‐Allada, C. Y.; Baloïtcha, E.; Alamou, E. A.
  • Earth's Future, Vol. 8, Issue 7
  • DOI: 10.1029/2020EF001595

Efficacy of climate forcings
journal, January 2005


The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
journal, January 2016

  • O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.
  • Geoscientific Model Development, Vol. 9, Issue 9
  • DOI: 10.5194/gmd-9-3461-2016

Seasonally Modulated Stratospheric Aerosol Geoengineering Alters the Climate Outcomes
journal, June 2020

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Geophysical Research Letters, Vol. 47, Issue 12
  • DOI: 10.1029/2020GL088337

Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering
journal, January 2018

  • Ji, Duoying; Fang, Songsong; Curry, Charles L.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 14
  • DOI: 10.5194/acp-18-10133-2018

Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time
journal, May 2016

  • Pitari, Giovanni; Di Genova, Glauco; Mancini, Eva
  • Atmosphere, Vol. 7, Issue 6
  • DOI: 10.3390/atmos7060075

UKESM1: Description and Evaluation of the U.K. Earth System Model
journal, December 2019

  • Sellar, Alistair A.; Jones, Colin G.; Mulcahy, Jane P.
  • Journal of Advances in Modeling Earth Systems
  • DOI: 10.1029/2019MS001739

A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models
journal, January 2015

  • Tilmes, S.; Mills, M. J.; Niemeier, U.
  • Geoscientific Model Development, Vol. 8, Issue 1
  • DOI: 10.5194/gmd-8-43-2015

An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project: GeoMIP ENERGETIC PERSPECTIVE
journal, December 2013

  • Kravitz, Ben; Rasch, Philip J.; Forster, Piers M.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 23
  • DOI: 10.1002/2013JD020502

Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
journal, January 2021

  • Franke, Henning; Niemeier, Ulrike; Visioni, Daniele
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 11
  • DOI: 10.5194/acp-21-8615-2021

The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results
journal, January 2015

  • Kravitz, B.; Robock, A.; Tilmes, S.
  • Geoscientific Model Development, Vol. 8, Issue 10
  • DOI: 10.5194/gmd-8-3379-2015

Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering?
journal, March 2021

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 5
  • DOI: 10.1029/2020JD033952

The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
journal, January 2020

  • Meinshausen, Malte; Nicholls, Zebedee R. J.; Lewis, Jared
  • Geoscientific Model Development, Vol. 13, Issue 8
  • DOI: 10.5194/gmd-13-3571-2020

Quasi‐Additivity of the Radiative Effects of Marine Cloud Brightening and Stratospheric Sulfate Aerosol Injection
journal, November 2017

  • Boucher, Olivier; Kleinschmitt, Christoph; Myhre, Gunnar
  • Geophysical Research Letters, Vol. 44, Issue 21
  • DOI: 10.1002/2017GL074647

Halving warming with stratospheric aerosol geoengineering moderates policy-relevant climate hazards
journal, March 2020


Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet: STRATOSPHERIC AEROSOLS AND WAIS
journal, June 2015

  • McCusker, K. E.; Battisti, D. S.; Bitz, C. M.
  • Geophysical Research Letters, Vol. 42, Issue 12
  • DOI: 10.1002/2015GL064314

Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2021

  • Kravitz, Ben; MacMartin, Douglas G.; Visioni, Daniele
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 6
  • DOI: 10.5194/acp-21-4231-2021

Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble
journal, December 2019

  • Cheng, Wei; MacMartin, Douglas G.; Dagon, Katherine
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2018JD030237

Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: Role of Earth System Processes in Present‐Day and Future Climate
journal, December 2019

  • Séférian, Roland; Nabat, Pierre; Michou, Martine
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2019MS001791

The Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2011

  • Kravitz, Ben; Robock, Alan; Boucher, Olivier
  • Atmospheric Science Letters, Vol. 12, Issue 2
  • DOI: 10.1002/asl.316

Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components
journal, January 2020

  • Laakso, Anton; Snyder, Peter K.; Liess, Stefan
  • Earth System Dynamics, Vol. 11, Issue 2
  • DOI: 10.5194/esd-11-415-2020

Persistent polar ocean warming in a strategically geoengineered climate
journal, October 2018


Geoengineering as a design problem
journal, January 2016

  • Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
  • Earth System Dynamics, Vol. 7, Issue 2
  • DOI: 10.5194/esd-7-469-2016

Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics
journal, January 2021

  • Banerjee, Antara; Butler, Amy H.; Polvani, Lorenzo M.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 9
  • DOI: 10.5194/acp-21-6985-2021

Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6
journal, August 2020


Impacts of stratospheric sulfate geoengineering on tropospheric ozone
journal, January 2017

  • Xia, Lili; Nowack, Peer J.; Tilmes, Simone
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 19
  • DOI: 10.5194/acp-17-11913-2017

Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle: CLIMATIC IMPACT OF DIFFERENT SRM METHODS
journal, November 2013

  • Niemeier, U.; Schmidt, H.; Alterskjaer, K.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 21
  • DOI: 10.1002/2013JD020445

Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP): GeoMIP ozone response
journal, March 2014

  • Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 5
  • DOI: 10.1002/2013JD020566

Geoengineering Earth's radiation balance to mitigate climate change from a quadrupling of CO2
journal, June 2003


Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models
journal, June 2020

  • Meehl, Gerald A.; Senior, Catherine A.; Eyring, Veronika
  • Science Advances, Vol. 6, Issue 26
  • DOI: 10.1126/sciadv.aba1981

Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model
journal, July 2020

  • Boucher, Olivier; Servonnat, Jérôme; Albright, Anna Lea
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 7
  • DOI: 10.1029/2019MS002010

Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
journal, January 2020

  • Tilmes, Simone; MacMartin, Douglas G.; Lenaerts, Jan T. M.
  • Earth System Dynamics, Vol. 11, Issue 3
  • DOI: 10.5194/esd-11-579-2020

The impact of geoengineering on vegetation in experiment G1 of the GeoMIP
journal, October 2015

  • Glienke, Susanne; Irvine, Peter J.; Lawrence, Mark G.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 19
  • DOI: 10.1002/2015JD024202

On solar geoengineering and climate uncertainty
journal, September 2015

  • MacMartin, Douglas G.; Kravitz, Ben; Rasch, Philip J.
  • Geophysical Research Letters, Vol. 42, Issue 17
  • DOI: 10.1002/2015GL065391

Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2017

  • Visioni, Daniele; Pitari, Giovanni; Aquila, Valentina
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 18
  • DOI: 10.5194/acp-17-11209-2017

Geoengineering as an optimization problem
journal, July 2010


Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora
journal, January 2018

  • Marshall, Lauren; Schmidt, Anja; Toohey, Matthew
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-2307-2018

Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction
journal, January 2018


The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design
journal, January 2018

  • Timmreck, Claudia; Mann, Graham W.; Aquila, Valentina
  • Geoscientific Model Development, Vol. 11, Issue 7
  • DOI: 10.5194/gmd-11-2581-2018

Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target
journal, April 2018

  • MacMartin, Douglas G.; Ricke, Katharine L.; Keith, David W.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2119
  • DOI: 10.1098/rsta.2016.0454

A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR)
journal, July 2018

  • Müller, W. A.; Jungclaus, J. H.; Mauritsen, T.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 7
  • DOI: 10.1029/2017MS001217

Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft: AEROSOL FROM CONDENSIBLE VAPOR
journal, September 2010

  • Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia
  • Geophysical Research Letters, Vol. 37, Issue 18
  • DOI: 10.1029/2010GL043975

Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble
journal, January 2021

  • Clyne, Margot; Lamarque, Jean-Francois; Mills, Michael J.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 5
  • DOI: 10.5194/acp-21-3317-2021

Upper tropospheric ice sensitivity to sulfate geoengineering
journal, January 2018

  • Visioni, Daniele; Pitari, Giovanni; di Genova, Glauco
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14867-2018

The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP): THE HYDROLOGIC IMPACT OF GEOENGINEERING
journal, October 2013

  • Tilmes, Simone; Fasullo, John; Lamarque, Jean-Francois
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 19
  • DOI: 10.1002/jgrd.50868

Reduced Poleward Transport Due to Stratospheric Heating Under Stratospheric Aerosols Geoengineering
journal, September 2020

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Geophysical Research Letters, Vol. 47, Issue 17
  • DOI: 10.1029/2020GL089470

Estimating Impacts and Trade‐offs in Solar Geoengineering Scenarios With a Moist Energy Balance Model
journal, May 2020

  • Lutsko, Nicholas J.; Seeley, Jacob T.; Keith, David W.
  • Geophysical Research Letters, Vol. 47, Issue 9
  • DOI: 10.1029/2020GL087290

Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering
journal, January 2015

  • Aswathy, V. N.; Boucher, O.; Quaas, M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9593-2015

Halving warming with idealized solar geoengineering moderates key climate hazards
journal, March 2019


The Atmospheric Energy Constraint on Global-Mean Precipitation Change
journal, January 2014


Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO 2 Injection Strategies
journal, July 2019

  • Kravitz, Ben; MacMartin, Douglas G.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 14
  • DOI: 10.1029/2019JD030329

Present‐Day and Historical Aerosol and Ozone Characteristics in CNRM CMIP6 Simulations
journal, January 2020

  • Michou, M.; Nabat, P.; Saint‐Martin, D.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 1
  • DOI: 10.1029/2019MS001816

Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble
journal, January 2018

  • Russotto, Rick D.; Ackerman, Thomas P.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-2287-2018

Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide
journal, January 2017

  • Visioni, Daniele; Pitari, Giovanni; Aquila, Valentina
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 6
  • DOI: 10.5194/acp-17-3879-2017

Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs
journal, January 2020

  • Lee, Walker; MacMartin, Douglas; Visioni, Daniele
  • Earth System Dynamics, Vol. 11, Issue 4
  • DOI: 10.5194/esd-11-1051-2020

Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models
journal, January 2020

  • Niemeier, Ulrike; Richter, Jadwiga H.; Tilmes, Simone
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 14
  • DOI: 10.5194/acp-20-8975-2020

Effects of Different Stratospheric SO 2 Injection Altitudes on Stratospheric Chemistry and Dynamics
journal, May 2018

  • Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 9
  • DOI: 10.1002/2017JD028146

Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO 2 injection studied with the LMDZ-S3A model
journal, January 2018

  • Kleinschmitt, Christoph; Boucher, Olivier; Platt, Ulrich
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 4
  • DOI: 10.5194/acp-18-2769-2018

Implementation of the CMIP6 Forcing Data in the IPSL‐CM6A‐LR Model
journal, April 2020

  • Lurton, Thibaut; Balkanski, Yves; Bastrikov, Vladislav
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 4
  • DOI: 10.1029/2019MS001940

CMIP6 Data Citation of Evolving Data
journal, June 2017

  • Stockhause, Martina; Lautenschlager, Michael
  • Data Science Journal, Vol. 16
  • DOI: 10.5334/dsj-2017-030

The Regional Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of Stratospheric Heating
journal, December 2019

  • Simpson, I. R.; Tilmes, S.; Richter, J. H.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2019JD031093

Designing a Radiative Antidote to CO 2
journal, January 2021

  • Seeley, Jacob T.; Lutsko, Nicholas J.; Keith, David W.
  • Geophysical Research Letters, Vol. 48, Issue 1
  • DOI: 10.1029/2020GL090876

CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project
journal, November 2018

  • Tilmes, Simone; Richter, Jadwiga H.; Kravitz, Ben
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 11
  • DOI: 10.1175/BAMS-D-17-0267.1

Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
journal, January 2021

  • Thornhill, Gillian; Collins, William; Olivié, Dirk
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 2
  • DOI: 10.5194/acp-21-1105-2021

First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives
journal, December 2017

  • Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026874

Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO 2 Injections
journal, December 2017

  • Richter, Jadwiga H.; Tilmes, Simone; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026912

Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
journal, January 2017


Seasonal Injection Strategies for Stratospheric Aerosol Geoengineering
journal, July 2019

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Geophysical Research Letters, Vol. 46, Issue 13
  • DOI: 10.1029/2019GL083680

Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering
journal, January 2018

  • Dai, Z.; Weisenstein, D. K.; Keith, D. W.
  • Geophysical Research Letters, Vol. 45, Issue 2
  • DOI: 10.1002/2017GL076472

Experimental reaction rates constrain estimates of ozone response to calcium carbonate geoengineering
journal, December 2020

  • Dai, Zhen; Weisenstein, Debra K.; Keutsch, Frank N.
  • Communications Earth & Environment, Vol. 1, Issue 1
  • DOI: 10.1038/s43247-020-00058-7

What is the limit of climate engineering by stratospheric injection of SO 2 ?
journal, January 2015


Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP): GEOMIP MODEL RESPONSE
journal, August 2013

  • Kravitz, Ben; Caldeira, Ken; Boucher, Olivier
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 15
  • DOI: 10.1002/jgrd.50646

Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds
journal, January 2020

  • Dhomse, Sandip S.; Mann, Graham W.; Antuña Marrero, Juan Carlos
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 21
  • DOI: 10.5194/acp-20-13627-2020

An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence
journal, September 2020

  • Sherwood, S. C.; Webb, M. J.; Annan, J. D.
  • Reviews of Geophysics, Vol. 58, Issue 4
  • DOI: 10.1029/2019RG000678

The Community Earth System Model Version 2 (CESM2)
journal, February 2020

  • Danabasoglu, G.; Lamarque, J. ‐F.; Bacmeister, J.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 2
  • DOI: 10.1029/2019MS001916

Uncertainty and the basis for confidence in solar geoengineering research
journal, January 2020


Volcanic eruptions and climate
journal, May 2000


The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations
journal, December 2017

  • MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026868

Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols
journal, January 2018

  • Visioni, Daniele; Pitari, Giovanni; Tuccella, Paolo
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 4
  • DOI: 10.5194/acp-18-2787-2018

Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth
journal, April 2021

  • Zarnetske, Phoebe L.; Gurevitch, Jessica; Franklin, Janet
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 15
  • DOI: 10.1073/pnas.1921854118

Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering
journal, February 2018

  • Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.
  • Earth's Future, Vol. 6, Issue 2
  • DOI: 10.1002/2017EF000720