DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D printed MOF-based mixed matrix thin-film composite membranes

Abstract

MOF-based mixed-matrix membranes (MMMs) have attracted considerable attention due to their tremendous separation performance and facile processability. In large-scale applications such as CO2 separation from flue gas, it is necessary to have high gas permeance, which can be achieved using thin membranes. However, there are only a handful of MOF MMMs that are fabricated in the form of thin-film composite (TFC) membranes. We propose herein the fabrication of robust thin-film composite mixed-matrix membranes (TFC MMMs) using a three dimensional (3D) printing technique with a thickness of 2–3 μm. We systematically studied the effect of casting concentration and number of electrospray cycles on membrane thickness and CO2 separation performance. Using a low concentration of polymer of intrinsic microporosity (PIM-1) or PIM-1/HKUST-1 solution (0.1 wt%) leads to TFC membranes with a thickness of less than 500 nm, but the fabricated membranes showed poor CO2/N2 selectivity, which could be attributed to microscopic defects. To avoid these microscale defects, we increased the concentration of the casting solution to 0.5 wt% resulting in TFC MMMs with a thickness of 2–3 μm which showed three times higher CO2 permeance than the neat PIM-1 membrane. These membranes represent the first examples of 3D printed TFC MMMs usingmore » the electrospray printing technique.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [3];  [4];  [5];  [2];  [6]
  1. DOE National Energy Technology Laboratory (NETL), Pittsburgh, USA, Oak Ridge Institute for Science and Education, Pittsburgh
  2. Connecticut Center for Applied Separations Technology, University of Connecticut, CT, USA, Department of Chemical & Biomolecular Engineering
  3. DOE National Energy Technology Laboratory (NETL), Pittsburgh, USA, Leidos Research Support Team, Pittsburgh
  4. Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
  5. DOE National Energy Technology Laboratory (NETL), Pittsburgh, USA, Deltha, New Orleans
  6. DOE National Energy Technology Laboratory (NETL), Pittsburgh, USA
Publication Date:
Research Org.:
Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1810184
Alternate Identifier(s):
OSTI ID: 1905021
Grant/Contract Number:  
SC0014664; CCMI-2001624
Resource Type:
Published Article
Journal Name:
RSC Advances
Additional Journal Information:
Journal Name: RSC Advances Journal Volume: 11 Journal Issue: 41; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemistry

Citation Formats

Elsaidi, Sameh K., Ostwal, Mayur, Zhu, Lingxiang, Sekizkardes, Ali, Mohamed, Mona H., Gipple, Michael, McCutcheon, Jeffrey R., and Hopkinson, David. 3D printed MOF-based mixed matrix thin-film composite membranes. United Kingdom: N. p., 2021. Web. doi:10.1039/D1RA03124D.
Elsaidi, Sameh K., Ostwal, Mayur, Zhu, Lingxiang, Sekizkardes, Ali, Mohamed, Mona H., Gipple, Michael, McCutcheon, Jeffrey R., & Hopkinson, David. 3D printed MOF-based mixed matrix thin-film composite membranes. United Kingdom. https://doi.org/10.1039/D1RA03124D
Elsaidi, Sameh K., Ostwal, Mayur, Zhu, Lingxiang, Sekizkardes, Ali, Mohamed, Mona H., Gipple, Michael, McCutcheon, Jeffrey R., and Hopkinson, David. Mon . "3D printed MOF-based mixed matrix thin-film composite membranes". United Kingdom. https://doi.org/10.1039/D1RA03124D.
@article{osti_1810184,
title = {3D printed MOF-based mixed matrix thin-film composite membranes},
author = {Elsaidi, Sameh K. and Ostwal, Mayur and Zhu, Lingxiang and Sekizkardes, Ali and Mohamed, Mona H. and Gipple, Michael and McCutcheon, Jeffrey R. and Hopkinson, David},
abstractNote = {MOF-based mixed-matrix membranes (MMMs) have attracted considerable attention due to their tremendous separation performance and facile processability. In large-scale applications such as CO2 separation from flue gas, it is necessary to have high gas permeance, which can be achieved using thin membranes. However, there are only a handful of MOF MMMs that are fabricated in the form of thin-film composite (TFC) membranes. We propose herein the fabrication of robust thin-film composite mixed-matrix membranes (TFC MMMs) using a three dimensional (3D) printing technique with a thickness of 2–3 μm. We systematically studied the effect of casting concentration and number of electrospray cycles on membrane thickness and CO2 separation performance. Using a low concentration of polymer of intrinsic microporosity (PIM-1) or PIM-1/HKUST-1 solution (0.1 wt%) leads to TFC membranes with a thickness of less than 500 nm, but the fabricated membranes showed poor CO2/N2 selectivity, which could be attributed to microscopic defects. To avoid these microscale defects, we increased the concentration of the casting solution to 0.5 wt% resulting in TFC MMMs with a thickness of 2–3 μm which showed three times higher CO2 permeance than the neat PIM-1 membrane. These membranes represent the first examples of 3D printed TFC MMMs using the electrospray printing technique.},
doi = {10.1039/D1RA03124D},
journal = {RSC Advances},
number = 41,
volume = 11,
place = {United Kingdom},
year = {Mon Jul 26 00:00:00 EDT 2021},
month = {Mon Jul 26 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/D1RA03124D

Save / Share:

Works referenced in this record:

Recent progress on thin film composite membranes for CO2 separation
journal, December 2020


Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks
journal, February 2010


Thin organic films by atmospheric-pressure ion deposition
journal, April 2004

  • Saf, Robert; Goriup, Marian; Steindl, Thomas
  • Nature Materials, Vol. 3, Issue 5
  • DOI: 10.1038/nmat1117

High-resolution electrohydrodynamic jet printing
journal, August 2007

  • Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun
  • Nature Materials, Vol. 6, Issue 10, p. 782-789
  • DOI: 10.1038/nmat1974

Electrospraying route to nanotechnology: An overview
journal, March 2008


TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study
journal, November 2002


Ultrahigh Porosity in Metal-Organic Frameworks
journal, July 2010


Nanoengineered Films via Surface-Confined Continuous Assembly of Polymers
journal, August 2011

  • Goh, Tor Kit; Guntari, Stefanie N.; Ochs, Christopher J.
  • Small, Vol. 7, Issue 20
  • DOI: 10.1002/smll.201101368

High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation
journal, March 2019


3D Printing of Mixed Matrix Films Based on Metal–Organic Frameworks and Thermoplastic Polyamide 12 by Selective Laser Sintering for Water Applications
journal, September 2019

  • Li, Rui; Yuan, Shangqin; Zhang, Wang
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 43
  • DOI: 10.1021/acsami.9b11840

A recent progress in thin film composite membrane: A review
journal, February 2012


Tuning the Topology and Functionality of Metal−Organic Frameworks by Ligand Design
journal, February 2011

  • Zhao, Dan; Timmons, Daren J.; Yuan, Daqiang
  • Accounts of Chemical Research, Vol. 44, Issue 2
  • DOI: 10.1021/ar100112y

Custom Formulation of Multicomponent Mixed-Matrix Membranes for Efficient Post-combustion Carbon Capture
journal, July 2020

  • Elsaidi, Sameh K.; Venna, Surendar; Sekizkardes, Ali K.
  • Cell Reports Physical Science, Vol. 1, Issue 7
  • DOI: 10.1016/j.xcrp.2020.100113

3D printed polyamide membranes for desalination
journal, August 2018


Xenon Recovery at Room Temperature using Metal-Organic Frameworks
journal, July 2017

  • Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian
  • Chemistry - A European Journal, Vol. 23, Issue 45
  • DOI: 10.1002/chem.201702668

A novel cross-linked nano-coating for carbon dioxide capture
journal, January 2016

  • Fu, Qiang; Kim, Jinguk; Gurr, Paul A.
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE02433A

Production of Uniform-Sized Polymer Core−Shell Microcapsules by Coaxial Electrospraying
journal, February 2008

  • Hwang, Yoon Kyun; Jeong, Unyong; Cho, Eun Chul
  • Langmuir, Vol. 24, Issue 6
  • DOI: 10.1021/la703546f

Advanced Porous Materials in Mixed Matrix Membranes
journal, July 2018

  • Cheng, Youdong; Ying, Yunpan; Japip, Susilo
  • Advanced Materials, Vol. 30, Issue 47
  • DOI: 10.1002/adma.201802401

3D printing based on imaging data: review of medical applications
journal, May 2010

  • Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.
  • International Journal of Computer Assisted Radiology and Surgery, Vol. 5, Issue 4
  • DOI: 10.1007/s11548-010-0476-x

Metal-Organic Frameworks for Separation
journal, March 2018

  • Zhao, Xiang; Wang, Yanxiang; Li, Dong-Sheng
  • Advanced Materials, Vol. 30, Issue 37
  • DOI: 10.1002/adma.201705189

Metal–organic framework nanosheets in polymer composite materials for gas separation
journal, November 2014

  • Rodenas, Tania; Luz, Ignacio; Prieto, Gonzalo
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4113

The potential to enhance membrane module design with 3D printing technology
journal, February 2016


Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles
journal, June 2017


Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Electrospray ionization for mass spectrometry of large biomolecules
journal, October 1989


Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity
journal, March 2004

  • Budd, P. M.; Elabas, E. S.; Ghanem, B. S.
  • Advanced Materials, Vol. 16, Issue 5, p. 456-459
  • DOI: 10.1002/adma.200306053

Flexibility in Metal–Organic Frameworks: A fundamental understanding
journal, March 2018

  • Elsaidi, Sameh K.; Mohamed, Mona H.; Banerjee, Debasis
  • Coordination Chemistry Reviews, Vol. 358
  • DOI: 10.1016/j.ccr.2017.11.022

Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes
journal, May 2007


Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations
journal, February 2018


Mixed-Matrix Membranes
journal, July 2017

  • Dechnik, Janina; Gascon, Jorge; Doonan, Christian J.
  • Angewandte Chemie International Edition, Vol. 56, Issue 32
  • DOI: 10.1002/anie.201701109

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Performance studies of mixed matrix membranes for gas separation: A review
journal, November 2010


Metal–organic frameworks for membrane-based separations
journal, November 2016


Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques
journal, February 2017


Functional Polymer Brushes*
journal, January 2002

  • Rühe, Jürgen; Knoll, Wolfgang
  • Journal of Macromolecular Science, Part C: Polymer Reviews, Vol. 42, Issue 1
  • DOI: 10.1081/MC-120003096

Mathematical Model for the Formation of Thin-Film Composite Membranes by Interfacial Polymerization:  Porous and Dense Films
journal, January 2000

  • Ji, J.; Dickson, J. M.; Childs, R. F.
  • Macromolecules, Vol. 33, Issue 2
  • DOI: 10.1021/ma991377w