DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Melting Point Depression and Phase Identification of Sugar Alcohols Encapsulated in ZIF Nanopores

Abstract

Sugar alcohols (SAs) have attractive characteristics as phase-change materials, but their relatively high melting temperature limits their application in the real world. Nanoconfinement can be a useful parameter to reduce the melting temperature to pragmatic ranges. Using molecular dynamics simulations, we investigate the phases and behaviors of encapsulated SA in ZIF-8 and ZIF-11, which cannot be experimentally observed. Based on reliable partial charges for the zeolitic imidazolate framework (ZIF) structures calculated by a density functional theory, structural analysis shows that the SA’s attractive interaction with the ZIF structure frustrates the SA crystallization and also elucidates the second-order phase transition between amorphous phases. A methodology is suggested to determine the phase transition temperature of confined materials and used to quantify the melting temperature depression of the ZIF-confined SAs. We also explored the thermal conductivity of SA-in-ZIF composites. Phonon frequency analysis verifies that the presence of SA molecules enhances the heat transfer by adding heat pathways between the nanoporous structure of ZIFs.

Authors:
 [1];  [2]; ORCiD logo [3]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Mechanical Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Mechanical Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1782207
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 125; Journal Issue: 18; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Kang, Hyungmook, Dames, Chris, and Urban, Jeffrey J. Melting Point Depression and Phase Identification of Sugar Alcohols Encapsulated in ZIF Nanopores. United States: N. p., 2021. Web. doi:10.1021/acs.jpcc.1c00514.
Kang, Hyungmook, Dames, Chris, & Urban, Jeffrey J. Melting Point Depression and Phase Identification of Sugar Alcohols Encapsulated in ZIF Nanopores. United States. https://doi.org/10.1021/acs.jpcc.1c00514
Kang, Hyungmook, Dames, Chris, and Urban, Jeffrey J. Thu . "Melting Point Depression and Phase Identification of Sugar Alcohols Encapsulated in ZIF Nanopores". United States. https://doi.org/10.1021/acs.jpcc.1c00514. https://www.osti.gov/servlets/purl/1782207.
@article{osti_1782207,
title = {Melting Point Depression and Phase Identification of Sugar Alcohols Encapsulated in ZIF Nanopores},
author = {Kang, Hyungmook and Dames, Chris and Urban, Jeffrey J.},
abstractNote = {Sugar alcohols (SAs) have attractive characteristics as phase-change materials, but their relatively high melting temperature limits their application in the real world. Nanoconfinement can be a useful parameter to reduce the melting temperature to pragmatic ranges. Using molecular dynamics simulations, we investigate the phases and behaviors of encapsulated SA in ZIF-8 and ZIF-11, which cannot be experimentally observed. Based on reliable partial charges for the zeolitic imidazolate framework (ZIF) structures calculated by a density functional theory, structural analysis shows that the SA’s attractive interaction with the ZIF structure frustrates the SA crystallization and also elucidates the second-order phase transition between amorphous phases. A methodology is suggested to determine the phase transition temperature of confined materials and used to quantify the melting temperature depression of the ZIF-confined SAs. We also explored the thermal conductivity of SA-in-ZIF composites. Phonon frequency analysis verifies that the presence of SA molecules enhances the heat transfer by adding heat pathways between the nanoporous structure of ZIFs.},
doi = {10.1021/acs.jpcc.1c00514},
journal = {Journal of Physical Chemistry. C},
number = 18,
volume = 125,
place = {United States},
year = {Thu Apr 29 00:00:00 EDT 2021},
month = {Thu Apr 29 00:00:00 EDT 2021}
}

Works referenced in this record:

Force Field for Molecular Dynamics Computations in Flexible ZIF-8 Framework
journal, December 2011

  • Zheng, Bin; Sant, Marco; Demontis, Pierfranco
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp209463a

Thermal Conductivity of Zeolitic Imidazolate Framework-8: A Molecular Simulation Study
journal, August 2013

  • Zhang, Xiaoliang; Jiang, Jianwen
  • The Journal of Physical Chemistry C, Vol. 117, Issue 36
  • DOI: 10.1021/jp405156y

Thermal Conductivity of ZIF-8 Thin-Film under Ambient Gas Pressure
journal, August 2017

  • Cui, Boya; Audu, Cornelius O.; Liao, Yijun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 34
  • DOI: 10.1021/acsami.7b06662

Peak load shifting with energy storage and price-based control system
journal, December 2015


Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology
journal, January 2016

  • Manz, Thomas A.; Limas, Nidia Gabaldon
  • RSC Advances, Vol. 6, Issue 53
  • DOI: 10.1039/C6RA04656H

Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates
journal, August 2020


Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues
journal, January 2018

  • Sapnik, Adam F.; Geddes, Harry S.; Reynolds, Emily M.
  • Chemical Communications, Vol. 54, Issue 69
  • DOI: 10.1039/C8CC04172E

Nanoconfined phase change materials for thermal energy applications
journal, January 2018

  • Aftab, Waseem; Huang, Xinyu; Wu, Wenhao
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/C7EE03587J

Heat transport in thin dielectric films
journal, March 1997

  • Lee, S. -M.; Cahill, David G.
  • Journal of Applied Physics, Vol. 81, Issue 6
  • DOI: 10.1063/1.363923

A comparison of methods for melting point calculation using molecular dynamics simulations
journal, April 2012

  • Zhang, Yong; Maginn, Edward J.
  • The Journal of Chemical Physics, Vol. 136, Issue 14
  • DOI: 10.1063/1.3702587

Characteristics of microencapsulated PCM slurry as a heat-transfer fluid
journal, April 1999

  • Yamagishi, Yasushi; Takeuchi, Hiromi; Pyatenko, Alexander T.
  • AIChE Journal, Vol. 45, Issue 4
  • DOI: 10.1002/aic.690450405

Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation
journal, March 2005


Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling
journal, January 2017

  • Skovajsa, Jan; Koláček, Martin; Zálešák, Martin
  • Energies, Vol. 10, Issue 2
  • DOI: 10.3390/en10020152

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications
journal, February 2018


A review on phase change energy storage: materials and applications
journal, June 2004

  • Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.
  • Energy Conversion and Management, Vol. 45, Issue 9-10, p. 1597-1615
  • DOI: 10.1016/j.enconman.2003.09.015

Graphene oxide stabilized polyethylene glycol for heat storage
journal, January 2012

  • Wang, Chongyun; Feng, Lili; Yang, Huazhe
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 38
  • DOI: 10.1039/c2cp41988b

Emerging Applications of Phase-Change Materials (PCMs): Teaching an Old Dog New Tricks
journal, January 2014

  • Hyun, Dong Choon; Levinson, Nathanael S.; Jeong, Unyong
  • Angewandte Chemie International Edition, Vol. 53, Issue 15
  • DOI: 10.1002/anie.201305201

Phase change materials integrated in building walls: A state of the art review
journal, March 2014


Unveiling thermal transitions of polymers in subnanometre pores
journal, October 2010

  • Uemura, Takashi; Yanai, Nobuhiro; Watanabe, Satoshi
  • Nature Communications, Vol. 1, Issue 1
  • DOI: 10.1038/ncomms1091

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations
journal, February 2007


The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa
journal, September 2009

  • Moggach, Stephen A.; Bennett, Thomas D.; Cheetham, Anthony K.
  • Angewandte Chemie International Edition, Vol. 48, Issue 38
  • DOI: 10.1002/anie.200902643

A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiOx core–shell nanoparticles
journal, January 2014

  • Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang
  • Nanoscale, Vol. 6, Issue 9
  • DOI: 10.1039/c3nr06810b

Increasing Phase Change Latent Heat of Stearic Acid via Nanocapsule Interface Confinement
journal, October 2013

  • Zhang, Shudong; Wang, Shuangshuang; Zhang, Jian
  • The Journal of Physical Chemistry C, Vol. 117, Issue 44
  • DOI: 10.1021/jp408478h

Estimation of thermal endurance of multicomponent sugar alcohols as phase change materials
journal, January 2015


Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
journal, April 2004


Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems
journal, January 2015

  • Zhang, Jingcheng; Zhang, Tianci; Yu, Dongbo
  • CrystEngComm, Vol. 17, Issue 43
  • DOI: 10.1039/C5CE01531F

Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage
journal, December 2016


Computer Simulation of the Lattice Dynamics of Solids
journal, December 1969


A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
journal, May 1995

  • Cornell, Wendy D.; Cieplak, Piotr; Bayly, Christopher I.
  • Journal of the American Chemical Society, Vol. 117, Issue 19
  • DOI: 10.1021/ja00124a002

Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999

  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248

A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids
journal, August 2004

  • Liu, Zhiping; Huang, Shiping; Wang, Wenchuan
  • The Journal of Physical Chemistry B, Vol. 108, Issue 34
  • DOI: 10.1021/jp048369o

Sugar-alcohol@ZIF nanocomposites display suppressed phase-change temperatures
journal, January 2020

  • Hackl, Lukas; Hsu, Chih-Hao; Gordon, Madeleine P.
  • Journal of Materials Chemistry A, Vol. 8, Issue 45
  • DOI: 10.1039/D0TA05019A

Quasi-Free Methyl Rotation in Zeolitic Imidazolate Framework-8
journal, December 2008

  • Zhou, Wei; Wu, Hui; Udovic, Terrence J.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 49
  • DOI: 10.1021/jp807033m

Solar energy storage using phase change materials☆
journal, December 2007


Thermal conductivity decomposition and analysis using molecular dynamics simulations
journal, April 2004


Computational Analysis of Sugar Alcohols as Phase-Change Material: Insight into the Molecular Mechanism of Thermal Energy Storage
journal, March 2016

  • Inagaki, Taichi; Ishida, Toyokazu
  • The Journal of Physical Chemistry C, Vol. 120, Issue 15
  • DOI: 10.1021/acs.jpcc.5b11999

Corrosion of metals and salt hydrates used for thermochemical energy storage
journal, March 2015