DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries

Abstract

Significance Lithium metal anodes offer a promising approach to improve the energy density of batteries to enable electrification of transportation. Dendrite suppression plagues the safety and cycle life of lithium metal anodes. In this work, we perform a comprehensive analysis of the use of liquid crystalline electrolytes in lithium metal anodes. We report theoretical demonstration of spontaneous stabilization of metal-electrode position using a liquid crystalline electrolyte due to the energy that arises when the molecules of the liquid crystal reorient. Building on this, we develop a comprehensive set of molecular-level design rules that will pave the way toward the realization of this new class of electrolytes for practical lithium metal batteries.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,
  2. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Publication Date:
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1671829
Grant/Contract Number:  
AR0000774
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 117 Journal Issue: 43; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Ahmad, Zeeshan, Hong, Zijian, and Viswanathan, Venkatasubramanian. Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. United States: N. p., 2020. Web. doi:10.1073/pnas.2008841117.
Ahmad, Zeeshan, Hong, Zijian, & Viswanathan, Venkatasubramanian. Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. United States. https://doi.org/10.1073/pnas.2008841117
Ahmad, Zeeshan, Hong, Zijian, and Viswanathan, Venkatasubramanian. Fri . "Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries". United States. https://doi.org/10.1073/pnas.2008841117.
@article{osti_1671829,
title = {Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries},
author = {Ahmad, Zeeshan and Hong, Zijian and Viswanathan, Venkatasubramanian},
abstractNote = {Significance Lithium metal anodes offer a promising approach to improve the energy density of batteries to enable electrification of transportation. Dendrite suppression plagues the safety and cycle life of lithium metal anodes. In this work, we perform a comprehensive analysis of the use of liquid crystalline electrolytes in lithium metal anodes. We report theoretical demonstration of spontaneous stabilization of metal-electrode position using a liquid crystalline electrolyte due to the energy that arises when the molecules of the liquid crystal reorient. Building on this, we develop a comprehensive set of molecular-level design rules that will pave the way toward the realization of this new class of electrolytes for practical lithium metal batteries.},
doi = {10.1073/pnas.2008841117},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 43,
volume = 117,
place = {United States},
year = {Fri Oct 09 00:00:00 EDT 2020},
month = {Fri Oct 09 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.2008841117

Save / Share:

Works referenced in this record:

Quantitative phase-field modeling of dendritic growth in two and three dimensions
journal, April 1998


Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes
journal, August 2017


Molecular order at the free surface of a nematic liquid crystal from light reflectivity measurements
journal, April 1971


Extending phase field models of solidification to polycrystalline materials
journal, December 2003


Projector augmented-wave method
journal, December 1994


Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin
journal, January 2019

  • Champagne, Pier-Luc; Ester, David; Bhattacharya, Amit
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/C9TA01852B

Rapini-Papoular Constants in a Model Nematic Liquid Crystal
journal, September 1997

  • Stelzer, Joachim; Longa, Lech; Trebin, Hans-Rainer
  • Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, Vol. 304, Issue 1
  • DOI: 10.1080/10587259708046969

Phase-Field Formulation for Quantitative Modeling of Alloy Solidification
journal, August 2001


Metal Electrode Surfaces Can Roughen Despite the Constraint of a Stiff Electrolyte
journal, January 2019

  • McMeeking, Robert M.; Ganser, Markus; Klinsmann, Markus
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0221906jes

Structured electrolytes to suppress dendrite growth in high energy density batteries: Structured electrolytes to suppress dendrite growth
journal, May 2016

  • Tan, Jinwang; Ryan, Emily M.
  • International Journal of Energy Research, Vol. 40, Issue 13
  • DOI: 10.1002/er.3560

Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

Rapid multiphase-field model development using a modular free energy based approach with automatic differentiation in MOOSE/MARMOT
journal, May 2017


Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Phase-Field Models for Microstructure Evolution
journal, August 2002


Phase-Field Simulation of Solidification
journal, August 2002


Engineered liquid crystal anchoring energies with nanopatterned surfaces
journal, January 2015

  • Gear, Christopher; Diest, Kenneth; Liberman, Vladimir
  • Optics Express, Vol. 23, Issue 2
  • DOI: 10.1364/OE.23.000807

Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies
journal, January 2017

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 31
  • DOI: 10.1039/C7CP03304D

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Lithium dendrite growth mechanisms in liquid electrolytes
journal, November 2017


Phase-Field Simulations of Lithium Dendrite Growth with Open-Source Software
journal, June 2018


Ion Transport in Glassy Side-Group Liquid Crystalline Polymer Electrolytes
journal, July 1999


The Mechanism of the Dendritic Electrocrystallization of Zinc
journal, January 1969

  • Diggle, J. W.; Despic, A. R.; Bockris, J. O'M.
  • Journal of The Electrochemical Society, Vol. 116, Issue 11
  • DOI: 10.1149/1.2411588

Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, August 2015


Nano-Segregated Polymeric Film Exhibiting High Ionic Conductivities
journal, November 2005

  • Kishimoto, Kenji; Suzawa, Tomoyuki; Yokota, Tomoki
  • Journal of the American Chemical Society, Vol. 127, Issue 44
  • DOI: 10.1021/ja0549594

Quantitative phase-field modeling of dendritic electrodeposition
journal, July 2015


Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries
journal, February 2018


Ionic conductivity in crystalline polymer electrolytes
journal, August 2001

  • Gadjourova, Zlatka; Andreev, Yuri G.; Tunstall, David P.
  • Nature, Vol. 412, Issue 6846
  • DOI: 10.1038/35087538

Liquid-Crystalline Electrolytes for Lithium-Ion Batteries: Ordered Assemblies of a Mesogen-Containing Carbonate and a Lithium Salt
journal, December 2014

  • Sakuda, Junji; Hosono, Eiji; Yoshio, Masafumi
  • Advanced Functional Materials, Vol. 25, Issue 8
  • DOI: 10.1002/adfm.201402509

Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities
journal, January 2017

  • Sripad, Shashank; Viswanathan, Venkatasubramanian
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0671711jes

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception
journal, January 2018

  • Peljo, Pekka; Girault, Hubert H.
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE01286E

Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy
journal, July 2016


From Nanostructured Liquid Crystals to Polymer-Based Electrolytes
journal, August 2010


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior
journal, March 2018


Alignment of Liquid Crystals with Patterned Isotropic Surfaces
journal, March 2001


Über die Erzeugung der Anisotropie von Oberflächen
journal, January 1928


Mathematics and liquid crystals
journal, April 2017


The Effect of Interfacial Deformation on Electrodeposition Kinetics
journal, January 2004

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1710893

Surface Anchoring of Liquid Crystal Molecules on Various Substrates
journal, January 1983


Orientation of liquid crystals by surface coupling agents
journal, April 1973


Real-space grid implementation of the projector augmented wave method
journal, January 2005


First Observation of a n-Doped Quasi-One-Dimensional Electronically-Conducting Discotic Liquid Crystal
journal, November 1994

  • Boden, Neville; Borner, Ruth C.; Bushby, Richard J.
  • Journal of the American Chemical Society, Vol. 116, Issue 23
  • DOI: 10.1021/ja00102a065

MOOSE: A parallel computational framework for coupled systems of nonlinear equations
journal, October 2009


Imaging of liquid crystals using a tunnelling microscope
journal, June 1988

  • Foster, J. S.; Frommer, J. E.
  • Nature, Vol. 333, Issue 6173
  • DOI: 10.1038/333542a0

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Enabling fast charging – A battery technology gap assessment
journal, November 2017


Alignment of Liquid Crystals by Grooved Surfaces
journal, January 1973


Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon
journal, January 2012

  • Pizzirusso, A.; Berardi, R.; Muccioli, L.
  • Chem. Sci., Vol. 3, Issue 2
  • DOI: 10.1039/C1SC00696G

Surface-produced alignment of liquid crystals
journal, January 1973

  • Kahn, F. J.; Taylor, G. N.; Schonhorn, H.
  • Proceedings of the IEEE, Vol. 61, Issue 7
  • DOI: 10.1109/PROC.1973.9171

Nonlinear phase-field model for electrode-electrolyte interface evolution
journal, November 2012


Imaging of liquid crystals with tunneling microscopy
journal, January 1989


Electric-Field-Responsive Lithium-Ion Conductors of Propylenecarbonate-Based Columnar Liquid Crystals
journal, April 2009

  • Shimura, Harutoki; Yoshio, Masafumi; Hamasaki, Atsushi
  • Advanced Materials, Vol. 21, Issue 16, p. 1591-1594
  • DOI: 10.1002/adma.200802252

New Type of Li Ion Conductor with 3D Interconnected Nanopores via Polymerization of a Liquid Organic Electrolyte-Filled Lyotropic Liquid-Crystal Assembly
journal, November 2009

  • Kerr, Robert L.; Miller, Seth A.; Shoemaker, Richard K.
  • Journal of the American Chemical Society, Vol. 131, Issue 44
  • DOI: 10.1021/ja905208f

One-dimensional electronic conductivity in discotic liquid crystals
journal, November 1988


Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces
journal, September 2015

  • Weng, Libo; Liao, Pei-Chun; Lin, Chen-Chun
  • AIP Advances, Vol. 5, Issue 9
  • DOI: 10.1063/1.4932153

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
journal, August 2018


Phase field kinetics of lithium electrodeposits
journal, December 2014


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model
journal, December 2015


Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal
journal, June 1972


Anomalous Scaling of the Surface Width during Cu Electrodeposition
journal, January 2001


Understanding shape entropy through local dense packing
journal, October 2014

  • van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 45
  • DOI: 10.1073/pnas.1418159111

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Electroconvection in a Viscoelastic Electrolyte
journal, March 2019


Surface effects and anchoring in liquid crystals
journal, March 1991


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries
journal, April 2020


Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Ion volumes: a comparison
journal, September 2002

  • Marcus, Yizhak; Donald Brooke Jenkins, H.; Glasser, Leslie
  • Journal of the Chemical Society, Dalton Transactions, Issue 20
  • DOI: 10.1039/b205785a

Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces
journal, October 2017


Onset of dendritic growth in lithium/polymer cells
journal, July 2001


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics
journal, June 2012

  • Bazant, Martin Z.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300145c

Effect of Additives on Lithium Cycling Efficiency
journal, January 1994

  • Hirai, Toshiro; Yoshimatsu, Isamu; Yamaki, Jun‐ichi
  • Journal of The Electrochemical Society, Vol. 141, Issue 9, p. 2300-2305
  • DOI: 10.1149/1.2055116

Molecular theories and structure. Some effects of molecular structural change on liquid crystalline properties
journal, January 1971


Towards in Silico Liquid Crystals. Realistic Transition Temperatures and Physical Properties for n -Cyanobiphenyls via Molecular Dynamics Simulations
journal, January 2009

  • Tiberio, Giustiniano; Muccioli, Luca; Berardi, Roberto
  • ChemPhysChem, Vol. 10, Issue 1
  • DOI: 10.1002/cphc.200800231

Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid
journal, September 1959

  • Cahn, John W.; Hilliard, John E.
  • The Journal of Chemical Physics, Vol. 31, Issue 3
  • DOI: 10.1063/1.1730447

Descriptors for Electrolyte-Renormalized Oxidative Stability of Solvents in Lithium-Ion Batteries
journal, October 2019

  • Pande, Vikram; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 22
  • DOI: 10.1021/acs.jpclett.9b02717

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Prospect of Thermal Shock Induced Healing of Lithium Dendrite
journal, March 2019


Nonlinear phase field model for electrodeposition in electrochemical systems
journal, December 2014

  • Liang, Linyun; Chen, Long-Qing
  • Applied Physics Letters, Vol. 105, Issue 26
  • DOI: 10.1063/1.4905341

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362