DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Perovskite Quantum Dot Solar Cells: Mapping Interfacial Energetics for Improving Charge Separation

Abstract

Colloidal halide perovskite nanocrystals or quantum dots (QDs) show similar defect tolerance as thin film perovskite materials with added nanoscale phenomena. Perovskite QD solar cells have demonstrated efficiencies of 16.6%, greater than that of any other QD material system. While the efficiency lags behind the best thin-film perovskite devices, these solar cells could have advantages over the thin-film versions in terms of processability, phase stability, and high open-circuit voltages. However, some operating principles behind perovskite quantum dot device stacks and the associated electric field properties are still unknown. Here, we characterize the junction structure within perovskite QD solar cells, by exposing functioning cross-sections and using nanometer-scale Kelvin probe force microscopy to offer insight into the selection and performance of charge selective contacts. We also evaluated various solar cell device architectures with different selective contacts to isolate the role of each junction in device performance. We show that in high-performance n-i-p architectures, both electron- and hole-transport layer (HTL) interfaces possess a strong electric field, but in the case of the inverted p-i-n architecture, we find that high interfacial recombination at the HTL/QD junction is responsible for subpar device performance. Perovskite QD and thin film materials can synergistically be combined to offermore » more design flexibility in PV devices, and here we demonstrate that the interface between perovskite thin films and QDs are relatively benign and amenable for synergistic device design.« less

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1670156
Alternate Identifier(s):
OSTI ID: 1658994
Report Number(s):
NREL/JA-5K00-77992
Journal ID: ISSN 2211-2855; MainId:31901;UUID:776e139f-f73f-4341-9e82-ee1748d4c768;MainAdminID:18618
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 78; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; charge selective contacts; junction structure; Kelvin probe force microscopy; perovskite quantum dot; solar cell

Citation Formats

Xiao, Chuanxiao, Zhao, Qian, Jiang, Chun-Sheng, Sun, Yinong, Al-Jassim, Mowafak M., Nanayakkara, Sanjini, and Luther, Joseph M. Perovskite Quantum Dot Solar Cells: Mapping Interfacial Energetics for Improving Charge Separation. United States: N. p., 2020. Web. doi:10.1016/j.nanoen.2020.105319.
Xiao, Chuanxiao, Zhao, Qian, Jiang, Chun-Sheng, Sun, Yinong, Al-Jassim, Mowafak M., Nanayakkara, Sanjini, & Luther, Joseph M. Perovskite Quantum Dot Solar Cells: Mapping Interfacial Energetics for Improving Charge Separation. United States. https://doi.org/10.1016/j.nanoen.2020.105319
Xiao, Chuanxiao, Zhao, Qian, Jiang, Chun-Sheng, Sun, Yinong, Al-Jassim, Mowafak M., Nanayakkara, Sanjini, and Luther, Joseph M. Fri . "Perovskite Quantum Dot Solar Cells: Mapping Interfacial Energetics for Improving Charge Separation". United States. https://doi.org/10.1016/j.nanoen.2020.105319. https://www.osti.gov/servlets/purl/1670156.
@article{osti_1670156,
title = {Perovskite Quantum Dot Solar Cells: Mapping Interfacial Energetics for Improving Charge Separation},
author = {Xiao, Chuanxiao and Zhao, Qian and Jiang, Chun-Sheng and Sun, Yinong and Al-Jassim, Mowafak M. and Nanayakkara, Sanjini and Luther, Joseph M.},
abstractNote = {Colloidal halide perovskite nanocrystals or quantum dots (QDs) show similar defect tolerance as thin film perovskite materials with added nanoscale phenomena. Perovskite QD solar cells have demonstrated efficiencies of 16.6%, greater than that of any other QD material system. While the efficiency lags behind the best thin-film perovskite devices, these solar cells could have advantages over the thin-film versions in terms of processability, phase stability, and high open-circuit voltages. However, some operating principles behind perovskite quantum dot device stacks and the associated electric field properties are still unknown. Here, we characterize the junction structure within perovskite QD solar cells, by exposing functioning cross-sections and using nanometer-scale Kelvin probe force microscopy to offer insight into the selection and performance of charge selective contacts. We also evaluated various solar cell device architectures with different selective contacts to isolate the role of each junction in device performance. We show that in high-performance n-i-p architectures, both electron- and hole-transport layer (HTL) interfaces possess a strong electric field, but in the case of the inverted p-i-n architecture, we find that high interfacial recombination at the HTL/QD junction is responsible for subpar device performance. Perovskite QD and thin film materials can synergistically be combined to offer more design flexibility in PV devices, and here we demonstrate that the interface between perovskite thin films and QDs are relatively benign and amenable for synergistic device design.},
doi = {10.1016/j.nanoen.2020.105319},
journal = {Nano Energy},
number = ,
volume = 78,
place = {United States},
year = {Fri Aug 28 00:00:00 EDT 2020},
month = {Fri Aug 28 00:00:00 EDT 2020}
}

Works referenced in this record:

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%
journal, August 2012

  • Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00591

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
journal, October 2012


Efficient planar heterojunction perovskite solar cells by vapour deposition
journal, September 2013

  • Liu, Mingzhen; Johnston, Michael B.; Snaith, Henry J.
  • Nature, Vol. 501, Issue 7467, p. 395-398
  • DOI: 10.1038/nature12509

Highly efficient planar perovskite solar cells through band alignment engineering
journal, January 2015

  • Correa Baena, Juan Pablo; Steier, Ludmilla; Tress, Wolfgang
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02608C

Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells
journal, January 2018

  • Zhang, Fei; Bi, Dongqin; Pellet, Norman
  • Energy & Environmental Science, Vol. 11, Issue 12
  • DOI: 10.1039/C8EE02252F

Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%
journal, February 2019


Surface passivation of perovskite film for efficient solar cells
journal, April 2019


Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance
journal, March 2014

  • De Wolf, Stefaan; Holovsky, Jakub; Moon, Soo-Jin
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 6
  • DOI: 10.1021/jz500279b

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber
journal, October 2013

  • Stranks, S. D.; Eperon, G. E.; Grancini, G.
  • Science, Vol. 342, Issue 6156, p. 341-344
  • DOI: 10.1126/science.1243982

Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3
journal, October 2013


Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
journal, August 2018


Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance
journal, May 2014


Qualifying composition dependent p and n self-doping in CH 3 NH 3 PbI 3
journal, October 2014

  • Wang, Qi; Shao, Yuchuan; Xie, Haipeng
  • Applied Physics Letters, Vol. 105, Issue 16
  • DOI: 10.1063/1.4899051

Defect Tolerance in Methylammonium Lead Triiodide Perovskite
journal, July 2016


Scalable fabrication of perovskite solar cells
journal, March 2018


Prospects of Nanoscience with Nanocrystals
journal, January 2015

  • Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506223h

Nontemplate Synthesis of CH 3 NH 3 PbBr 3 Perovskite Nanoparticles
journal, January 2014

  • Schmidt, Luciana C.; Pertegás, Antonio; González-Carrero, Soranyel
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja4109209

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
journal, February 2015

  • Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.
  • Nano Letters, Vol. 15, Issue 6
  • DOI: 10.1021/nl5048779

Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires
journal, July 2015

  • Zhang, Dandan; Eaton, Samuel W.; Yu, Yi
  • Journal of the American Chemical Society, Vol. 137, Issue 29
  • DOI: 10.1021/jacs.5b05404

Emulsion Synthesis of Size-Tunable CH 3 NH 3 PbBr 3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes
journal, December 2015

  • Huang, Hailong; Zhao, Fangchao; Liu, Lige
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 51
  • DOI: 10.1021/acsami.5b10373

Structure-Tuned Lead Halide Perovskite Nanocrystals
journal, November 2015

  • Hassan, Yasser; Song, Yin; Pensack, Ryan D.
  • Advanced Materials, Vol. 28, Issue 3
  • DOI: 10.1002/adma.201503461

Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics
journal, July 2018

  • Wheeler, Lance M.; Sanehira, Erin M.; Marshall, Ashley R.
  • Journal of the American Chemical Society, Vol. 140, Issue 33
  • DOI: 10.1021/jacs.8b04984

Inorganic caesium lead iodide perovskite solar cells
journal, January 2015

  • Eperon, Giles E.; Paternò, Giuseppe M.; Sutton, Rebecca J.
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA06398A

Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells
journal, February 2016

  • Beal, Rachel E.; Slotcavage, Daniel J.; Leijtens, Tomas
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 5
  • DOI: 10.1021/acs.jpclett.6b00002

Quantum dot-induced phase stabilization of  -CsPbI3 perovskite for high-efficiency photovoltaics
journal, October 2016


Thermodynamically stabilized β-CsPbI 3 –based perovskite solar cells with efficiencies >18%
journal, August 2019


Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI 3 /FAPbI 3 Bilayer Structure
journal, October 2019


Graded Bandgap CsPbI2+Br1− Perovskite Solar Cells with a Stabilized Efficiency of 14.4%
journal, August 2018


Quantum-Dot-Induced Cesium-Rich Surface Imparts Enhanced Stability to Formamidinium Lead Iodide Perovskite Solar Cells
journal, July 2019


3D-2D-0D Interface Profiling for Record Efficiency All-Inorganic CsPbBrI 2 Perovskite Solar Cells with Superior Stability
journal, January 2018

  • Zhang, Jingru; Bai, Dongliang; Jin, Zhiwen
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703246

Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
journal, October 2017

  • Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao4204

14.1% CsPbI 3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation
journal, June 2019

  • Ling, Xufeng; Zhou, Sijie; Yuan, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201900721

Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition
journal, September 2018


Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA 1– x Cs x )Pb(I 1– x Br x ) 3 Quantum Dots
journal, July 2019


Graphdiyne: An Efficient Hole Transporter for Stable High-Performance Colloidal Quantum Dot Solar Cells
journal, May 2016

  • Jin, Zhiwen; Yuan, Mingjian; Li, Hui
  • Advanced Functional Materials, Vol. 26, Issue 29
  • DOI: 10.1002/adfm.201601570

Efficient Semitransparent CsPbI 3 Quantum Dots Photovoltaics Using a Graphene Electrode
journal, August 2019

  • Tavakoli, Mohammad Mahdi; Nasilowski, Michel; Zhao, Jiayuan
  • Small Methods, Vol. 3, Issue 12
  • DOI: 10.1002/smtd.201900449

All-Inorganic, Solution-Processed, Inverted CsPbI 3 Quantum Dot Solar Cells with a PCE of 13.1% Achieved via a Layer-by-Layer FAI Treatment
journal, May 2020

  • Shivarudraiah, Sunil B.; Ng, Michael; Li, C. -H. Angus
  • ACS Applied Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1021/acsaem.0c00584

Operation Mechanism of Perovskite Quantum Dot Solar Cells Probed by Impedance Spectroscopy
journal, December 2018


Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential
journal, September 2015

  • Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9397

Junction Quality of SnO 2 -Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling
journal, October 2017

  • Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 44
  • DOI: 10.1021/acsami.7b08582

Extrinsic ion migration in perovskite solar cells
journal, January 2017

  • Li, Zhen; Xiao, Chuanxiao; Yang, Ye
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00358G

Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell
journal, September 2014

  • Bergmann, Victor W.; Weber, Stefan A. L.; Javier Ramos, F.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6001

Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells
journal, February 2018


How the formation of interfacial charge causes hysteresis in perovskite solar cells
journal, January 2018

  • Weber, Stefan A. L.; Hermes, Ilka M.; Turren-Cruz, Silver-Hamill
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE01447G

Local Time-Dependent Charging in a Perovskite Solar Cell
journal, July 2016

  • Bergmann, Victor W.; Guo, Yunlong; Tanaka, Hideyuki
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 30
  • DOI: 10.1021/acsami.6b04104

Effect of Window-Layer Materials on p-n Junction Location in Cu(In,Ga)Se 2 Solar Cells
journal, January 2019


Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform
journal, December 2017


Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon
journal, March 2020


Distribution of the electrical potential in hydrogenated amorphous silicon solar cells
journal, January 2005


Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy
journal, July 2009


Substrate-controlled band positions in CH 3 NH 3 PbI 3 perovskite films
journal, January 2014

  • Miller, Elisa M.; Zhao, Yixin; Mercado, Candy C.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 40
  • DOI: 10.1039/C4CP03533J

Substrate-dependent electronic structure and film formation of MAPbI3 perovskites
journal, January 2017

  • Olthof, Selina; Meerholz, Klaus
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40267

Substrate-Dependent Photoconductivity Dynamics in a High-Efficiency Hybrid Perovskite Alloy
journal, January 2019

  • Tirmzi, Ali Moeed; Christians, Jeffrey A.; Dwyer, Ryan P.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 6
  • DOI: 10.1021/acs.jpcc.8b11783

Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
journal, January 2018


Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells
journal, May 2015

  • Ke, Weijun; Fang, Guojia; Liu, Qin
  • Journal of the American Chemical Society, Vol. 137, Issue 21
  • DOI: 10.1021/jacs.5b01994

Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

Compositional engineering of perovskite materials for high-performance solar cells
journal, January 2015

  • Jeon, Nam Joong; Noh, Jun Hong; Yang, Woon Seok
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14133

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells
journal, July 2018

  • Stolterfoht, Martin; Wolff, Christian M.; Márquez, José A.
  • Nature Energy, Vol. 3, Issue 10
  • DOI: 10.1038/s41560-018-0219-8

Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites
journal, January 2015

  • Zhao, Yong; Liang, Chunjun; Zhang, Huimin
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE04064C

Advances in Perovskite Solar Cells
journal, January 2016


Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations
journal, June 2017


Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
journal, June 2018


Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Enabling Flexible All-Perovskite Tandem Solar Cells
journal, September 2019


Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
journal, January 2020


Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots
journal, June 2016

  • Cha, Mingyang; Da, Peimei; Wang, Jun
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b04519

Congeneric Incorporation of CsPbBr 3 Nanocrystals in a Hybrid Perovskite Heterojunction for Photovoltaic Efficiency Enhancement
journal, November 2017


Efficiency and stability enhancement of perovskite solar cells by introducing CsPbI3 quantum dots as an interface engineering layer
journal, June 2018


Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells
journal, August 2019


Size-Dependent Lattice Structure and Confinement Properties in CsPbI 3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization
journal, November 2019


Large‐Area Material and Junction Damage in c–Si Solar Cells by Potential‐Induced Degradation
journal, January 2019

  • Xiao, Chuanxiao; Jiang, Chun‐Sheng; Harvey, Steve P.
  • Solar RRL, Vol. 3, Issue 4
  • DOI: 10.1002/solr.201800303