DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion

Abstract

We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution T e ( r , z ) . The results indicate that the magnetic field increases T e , the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.

Authors:
ORCiD logo [1];  [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2]
  1. Univ. of Nevada, Reno, NV (United States). Physics Dept.
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1667428
Report Number(s):
SAND-2020-9439J
Journal ID: ISSN 2470-0045; 690458; TRN: US2203672
Grant/Contract Number:  
AC04-94AL85000; 1575018; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 102; Journal Issue: 2; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; magnetoinertial fusion; magnetized plasma; x-ray emission spectroscopy; plasma physics

Citation Formats

Carpenter, K. R., Mancini, R. C., Harding, E. C., Harvey-Thompson, A. J., Geissel, M., Weis, M. R., Hansen, S. B., Peterson, K. J., and Rochau, G. A. Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion. United States: N. p., 2020. Web. doi:10.1103/physreve.102.023209.
Carpenter, K. R., Mancini, R. C., Harding, E. C., Harvey-Thompson, A. J., Geissel, M., Weis, M. R., Hansen, S. B., Peterson, K. J., & Rochau, G. A. Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion. United States. https://doi.org/10.1103/physreve.102.023209
Carpenter, K. R., Mancini, R. C., Harding, E. C., Harvey-Thompson, A. J., Geissel, M., Weis, M. R., Hansen, S. B., Peterson, K. J., and Rochau, G. A. Mon . "Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion". United States. https://doi.org/10.1103/physreve.102.023209. https://www.osti.gov/servlets/purl/1667428.
@article{osti_1667428,
title = {Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion},
author = {Carpenter, K. R. and Mancini, R. C. and Harding, E. C. and Harvey-Thompson, A. J. and Geissel, M. and Weis, M. R. and Hansen, S. B. and Peterson, K. J. and Rochau, G. A.},
abstractNote = {We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution Te(r,z). The results indicate that the magnetic field increases Te, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.},
doi = {10.1103/physreve.102.023209},
journal = {Physical Review E},
number = 2,
volume = 102,
place = {United States},
year = {Mon Aug 24 00:00:00 EDT 2020},
month = {Mon Aug 24 00:00:00 EDT 2020}
}

Works referenced in this record:

Measurement and interpretation of dielectronic recombination satellite line intensities
journal, March 1972

  • Gabriel, A. H.; Paget, T. M.
  • Journal of Physics B: Atomic and Molecular Physics, Vol. 5, Issue 3
  • DOI: 10.1088/0022-3700/5/3/034

Multi-objective spectroscopic analysis of core gradients: Extension from two to three objectives
journal, May 2006

  • Welser, L. A.; Mancini, R. C.; Koch, J. A.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.052

Experiments and multiscale simulations of laser propagation through ignition-scale plasmas
journal, September 2007

  • Glenzer, S. H.; Froula, D. H.; Divol, L.
  • Nature Physics, Vol. 3, Issue 10
  • DOI: 10.1038/nphys709

Diagnosing magnetized liner inertial fusion experiments on Za)
journal, May 2015

  • Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921217

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets
journal, February 2018

  • Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.
  • Physics of Plasmas, Vol. 25, Issue 2
  • DOI: 10.1063/1.5003038

An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

Hydrodynamics simulations of 2ω laser propagation in underdense gasbag plasmas
journal, December 2004

  • Meezan, N. B.; Divol, L.; Marinak, M. M.
  • Physics of Plasmas, Vol. 11, Issue 12
  • DOI: 10.1063/1.1806476

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy
journal, March 2019

  • Harvey-Thompson, A. J.; Geissel, M.; Jennings, C. A.
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5086044

Magnetic field impact on the laser heating in MagLIF
journal, May 2020

  • Carpenter, K. R.; Mancini, R. C.; Harding, E. C.
  • Physics of Plasmas, Vol. 27, Issue 5
  • DOI: 10.1063/1.5129417

Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
journal, May 2017

  • Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983140

Hybrid atomic models for spectroscopic plasma diagnostics
journal, May 2007


Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments
journal, April 2015

  • Harding, E. C.; Ao, T.; Bailey, J. E.
  • Review of Scientific Instruments, Vol. 86, Issue 4
  • DOI: 10.1063/1.4918619

Electrical conductivity for warm, dense aluminum plasmas and liquids
journal, August 2002


Effect of Nonlocal Transport on Heat-Wave Propagation
journal, May 2004


Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion
journal, November 2016


Magnetised thermal self-focusing and filamentation of long-pulse lasers in plasmas relevant to magnetised ICF experiments
journal, September 2018

  • Watkins, H. C.; Kingham, R. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5049229

Spectroscopic Determination of Dynamic Plasma Gradients in Implosion Cores
journal, January 2002


Pulsed-coil magnet systems for applying uniform 10–30 T fields to centimeter-scale targets on Sandia's Z facility
journal, December 2014

  • Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.
  • Review of Scientific Instruments, Vol. 85, Issue 12
  • DOI: 10.1063/1.4902566

Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Multiobjective method for fitting pinhole image intensity profiles of implosion cores driven by a Pareto genetic algorithm
journal, October 2006

  • Nagayama, T.; Mancini, R. C.; Welser, L. A.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2338314

Enhancing performance of magnetized liner inertial fusion at the Z facility
journal, November 2018

  • Slutz, S. A.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5054317

Effects of angular-momentum-changing electron collisions and radiative corrections on dielectronic satellite spectra
journal, December 1985


Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion
journal, December 2015

  • Harvey-Thompson, A. J.; Sefkow, A. B.; Nagayama, T. N.
  • Physics of Plasmas, Vol. 22, Issue 12
  • DOI: 10.1063/1.4938047

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


Spectroscopic determination of temperature and density spatial profiles and mix in indirect-drive implosion cores
journal, November 2007


High-order satellites and plasma gradients effects on the Ar Heβ line opacity and intensity distribution
journal, April 2000

  • Golovkin, I. E.; Mancini, R. C.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 65, Issue 1-3
  • DOI: 10.1016/S0022-4073(99)00073-4

Transport Phenomena in a Completely Ionized Gas
journal, March 1953


Investigation of a polychromatic tomography method for the extraction of the three-dimensional spatial structure of implosion core plasmas
journal, August 2012

  • Nagayama, T.; Mancini, R. C.; Florido, R.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4743017

SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output
journal, May 2007


Development of spectroscopic tools for the determination of temperature and density spatial profiles in implosion cores
journal, May 2007


Heat transport modeling of the dot spectroscopy platform on NIF
journal, February 2018

  • Farmer, W. A.; Jones, O. S.; Barrios, M. A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 4
  • DOI: 10.1088/1361-6587/aaaefd

Comparison of genetic-algorithm and emissivity-ratio analyses of image data from OMEGA implosion cores
journal, October 2008

  • Nagayama, T.; Mancini, R. C.; Florido, R.
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2966370

Z-Beamlet: a multikilojoule, terawatt-class laser system
journal, January 2005

  • Rambo, Patrick K.; Smith, Ian C.; Porter, John L.
  • Applied Optics, Vol. 44, Issue 12
  • DOI: 10.1364/AO.44.002421

Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
journal, February 2016

  • Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941100

Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ion Lines
journal, October 1972

  • Gabriel, A. H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 160, Issue 1
  • DOI: 10.1093/mnras/160.1.99

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740