DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of ignition and burn propagation in inertial fusion implosions

Abstract

A detailed analytic model is presented here to investigate the physics of burn propagation in inertially confined plasmas. The onset of ignition and burn propagation occurs when alpha heating of the hot spot causes rapid ablation of shell mass into the hot spot. This allows large energy gains to be achieved since most of the fuel mass is located in the shell. Here, we first present a comprehensive review of previous analytic models that have been used to describe the physics of hot-spot evolution and ignition; we then show that a proper description of a propagating burn wave requires a comprehensive model of hot spot and shell evolution that includes proper mass conservation in the shell, fusion reactivity, and fuel depletion. The analytic theory is in good agreement with detailed radiation-hydrodynamic simulations that predict the onset of burn propagation as occurring when the yield enhancement caused by alpha heating is between 15- and 25-fold, $$f_α$$ ~ 1.4, where $$f_α$$ = alpha energy deposited/hot-spot energy at bang time, and the hot-spot burnup fraction is approximately 2%. We show that the definition of ignition is not sensitive to the alpha-particle stopping power nor asymmetries provided that the absorbed fraction of alpha particles $$θ_α$$ is correctly accounted for. Finally, we use the results of 2-D simulations to show that even when $$θ_α$$ is small and unknown (as is true in hot spots with mid modes that have significant leakage of alpha particles into the surrounding cold bubbles), one can still relate the experimentally measureable parameter $$\chi^{53}_α$$ to the yield amplification and the burning-plasma parameter $$Q^{\text{hs}}_α$$ = alpha energy deposited/total input work delivered to the hot spot

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [2]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. Univ. of Rochester, NY (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); New York State Energy Research and Development Authority
OSTI Identifier:
1631033
Alternate Identifier(s):
OSTI ID: 1630376
Report Number(s):
2019-287; 2522; 1566
Journal ID: ISSN 1070-664X; 2019-287, 2522, 1566; TRN: US2200731
Grant/Contract Number:  
NA0003856
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Plasma confinement; Thermodynamic states and processes; Equations of fluid dynamics; Energy conservation; Hydrodynamics simulations; Alpha particles; Deflagration; Newtonian mechanics; Fluid mechanics

Citation Formats

Christopherson, A. R., Betti, R., Miller, S., Gopalaswamy, V., Mannion, O. M., and Cao, D. Theory of ignition and burn propagation in inertial fusion implosions. United States: N. p., 2020. Web. doi:10.1063/1.5143889.
Christopherson, A. R., Betti, R., Miller, S., Gopalaswamy, V., Mannion, O. M., & Cao, D. Theory of ignition and burn propagation in inertial fusion implosions. United States. https://doi.org/10.1063/1.5143889
Christopherson, A. R., Betti, R., Miller, S., Gopalaswamy, V., Mannion, O. M., and Cao, D. Thu . "Theory of ignition and burn propagation in inertial fusion implosions". United States. https://doi.org/10.1063/1.5143889. https://www.osti.gov/servlets/purl/1631033.
@article{osti_1631033,
title = {Theory of ignition and burn propagation in inertial fusion implosions},
author = {Christopherson, A. R. and Betti, R. and Miller, S. and Gopalaswamy, V. and Mannion, O. M. and Cao, D.},
abstractNote = {A detailed analytic model is presented here to investigate the physics of burn propagation in inertially confined plasmas. The onset of ignition and burn propagation occurs when alpha heating of the hot spot causes rapid ablation of shell mass into the hot spot. This allows large energy gains to be achieved since most of the fuel mass is located in the shell. Here, we first present a comprehensive review of previous analytic models that have been used to describe the physics of hot-spot evolution and ignition; we then show that a proper description of a propagating burn wave requires a comprehensive model of hot spot and shell evolution that includes proper mass conservation in the shell, fusion reactivity, and fuel depletion. The analytic theory is in good agreement with detailed radiation-hydrodynamic simulations that predict the onset of burn propagation as occurring when the yield enhancement caused by alpha heating is between 15- and 25-fold, $f_α$ ~ 1.4, where $f_α$ = alpha energy deposited/hot-spot energy at bang time, and the hot-spot burnup fraction is approximately 2%. We show that the definition of ignition is not sensitive to the alpha-particle stopping power nor asymmetries provided that the absorbed fraction of alpha particles $θ_α$ is correctly accounted for. Finally, we use the results of 2-D simulations to show that even when $θ_α$ is small and unknown (as is true in hot spots with mid modes that have significant leakage of alpha particles into the surrounding cold bubbles), one can still relate the experimentally measureable parameter $\chi^{53}_α$ to the yield amplification and the burning-plasma parameter $Q^{\text{hs}}_α$ = alpha energy deposited/total input work delivered to the hot spot},
doi = {10.1063/1.5143889},
journal = {Physics of Plasmas},
number = 5,
volume = 27,
place = {United States},
year = {Thu May 21 00:00:00 EDT 2020},
month = {Thu May 21 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Laser-driven fusion
journal, April 1974


Escape of α Particles from a Laser-Pulse-Initiated Thermonuclear Reaction
journal, April 1973


Measuring the absolute deuterium–tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF
journal, October 2012

  • Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4738657

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

The physics of DT ignition in small fusion targets
journal, March 1981


Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime
journal, July 2018

  • Christopherson, A. R.; Betti, R.; Howard, J.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5030337

Progress toward a self-consistent set of 1D ignition capsule metrics in ICF
journal, December 2018

  • Lindl, J. D.; Haan, S. W.; Landen, O. L.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5049595

Capsule modeling of high foot implosion experiments on the National Ignition Facility
journal, March 2017

  • Clark, D. S.; Kritcher, A. L.; Milovich, J. L.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 5
  • DOI: 10.1088/1361-6587/aa6216

Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited)
journal, October 2012

  • Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728095

Ignition condition and gain prediction for perturbed inertial confinement fusion targets
journal, November 2001

  • Kishony, Roy; Shvarts, Dov
  • Physics of Plasmas, Vol. 8, Issue 11
  • DOI: 10.1063/1.1412009

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules
journal, December 2001

  • Betti, R.; Umansky, M.; Lobatchev, V.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1412006

Integrated diagnostic analysis of inertial confinement fusion capsule performance
journal, May 2013

  • Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802196

Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
journal, April 2010


Initial performance results of the OMEGA laser system
journal, January 1997


Inertial confinement fusion ignition criteria, critical profiles, and burn wave propagation using self-similar solutions
journal, May 1997

  • Kishony, Roy; Waxman, Eli; Shvarts, Dov
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872314

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Erratum: “Review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)]
journal, December 2014

  • Lindl, J. D.; Landen, O. L.; Edwards, J.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903459

A multiscale analysis of the hotspot dynamics during the deceleration phase of inertial confinement capsules
journal, January 2005

  • Garnier, Josselin; Cherfils, Catherine
  • Physics of Plasmas, Vol. 12, Issue 1
  • DOI: 10.1063/1.1825389

Alpha heating enhancement in MagLIF targets: A simple analytic model
journal, January 2019

  • Paradela, J.; García-Rubio, F.; Sanz, J.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5079519

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Laser-driven isentropic hollow-shell implosions: the problem of ignition
journal, February 1979


Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets
journal, November 2004


Laser-Driven Implosion of Spherical DT Targets to Thermonuclear Burn Conditions
journal, January 1973


Burn performance of inertial confinement fusion targets
journal, January 1988


Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA
journal, July 2016


On thermonuclear ignition criterion at the National Ignition Facility
journal, October 2014

  • Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming
  • Physics of Plasmas, Vol. 21, Issue 10
  • DOI: 10.1063/1.4898734

Thermonuclear Detonation Wave Structure
journal, January 1968


Some Criteria for a Power Producing Thermonuclear Reactor
journal, January 1957


The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


Inertial confinement fusion: Ignition of isobarically compressed D-T targets
journal, March 1984


Tripled yield in direct-drive laser fusion through statistical modelling
journal, January 2019


Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
journal, May 2010

  • Betti, R.; Chang, P. Y.; Spears, B. K.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3380857

Energy gain of laser-compressed pellets: a simple model calculation
journal, July 1976


Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh
journal, October 2005


Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

A comprehensive alpha-heating model for inertial confinement fusion
journal, January 2018

  • Christopherson, A. R.; Betti, R.; Bose, A.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4991405

Laser R&D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications
journal, June 1984


Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

The role of nuclear reactions and α-particle transport in the dynamics of inertial confinement fusion capsules
journal, October 2008

  • Garnier, Josselin; Cherfils-Clérouin, Catherine
  • Physics of Plasmas, Vol. 15, Issue 10
  • DOI: 10.1063/1.2988333

The Physics of Inertial Fusion
book, January 2004


The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics
journal, October 2017

  • Bose, A.; Betti, R.; Shvarts, D.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4995250

Thermonuclear burn characteristics of compressed deuterium-tritium microspheres
journal, January 1974


Thermonuclear Reaction Waves at High Densities
journal, January 1972


Core conditions for alpha heating attained in direct-drive inertial confinement fusion
journal, July 2016


Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility
journal, November 2018

  • Hurricane, O. A.; Callahan, D. A.; Springer, P. T.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaed71

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion
journal, October 2008

  • Zhou, C. D.; Betti, R.
  • Physics of Plasmas, Vol. 15, Issue 10
  • DOI: 10.1063/1.2998604

Improved formulas for fusion cross-sections and thermal reactivities
journal, April 1992


Similarity solution of thermonuclear burn wave with electron and α-conductivities
journal, December 1976


On energy gain of fusion targets: the model of Kidder and Bodner improved
journal, April 1982


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

A generalized scaling law for the ignition energy of inertial confinement fusion capsules
journal, January 2001


Thermonuclear ignition and the onset of propagating burn in inertial fusion implosions
journal, February 2019


Effects of asymmetry and hot-spot shape on ignition capsules
journal, August 2018


High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
journal, September 2018


Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

Laser-Driven Implosion of Spherical DT Targets to Thermonuclear Burn Conditions.
journal, February 1973


Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions
journal, April 2018

  • Weilacher, F.; Radha, P. B.; Forrest, C.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5016856

Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules
journal, November 2005

  • Sanz, J.; Garnier, J.; Cherfils, C.
  • Physics of Plasmas, Vol. 12, Issue 11
  • DOI: 10.1063/1.2130315