skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime

Abstract

Here, a detailed and comprehensive 1-dimensional theory of alpha-heating metrics is developed to determine the onset of burning plasma regimes in inertial fusion implosions. The analysis uses an analytic model of the deceleration, stagnation, and burn phases of inertial confinement fusion implosions combined with the results from a database of radiation-hydrodynamic simulations. The onset of the burning-plasma regime occurs when the alpha-heating rate in the hot spot exceeds the compression power input and is represented by the parameter Q α = 1/2 α energy/PdV work. A second burning plasma regime is also identified, where the alpha-heating rate exceeds the compression input to the entire stagnated plasma, including the hot spot and confining shell, and is represented by Q tot α. It is shown that progress towards the burning-plasma regime is correlated with the yield enhancement caused by alpha-heating but is more accurately related to the fractional alpha energy f α = 1/2 α energy/hot-spot energy. In the analysis presented here, we develop a method to infer these intermediate metrics from experiments and show that the alpha power produced in National Ignition Facility High-Foot implosions is approximately 50% of the external input power delivered to the hot spot and 25% ofmore » the total external power (from compression) delivered to the stagnated core.« less

Authors:
 [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Rochester, Rochester, NY (United States). Fusion Science Center and Laboratory for Laser Energetics
Publication Date:
Research Org.:
Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1463091
Alternate Identifier(s):
OSTI ID: 1460919
Grant/Contract Number:  
NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Christopherson, A. R., Betti, R., Howard, J., Woo, K. M., Bose, A., Campbell, E. M., and Gopalaswamy, V. Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime. United States: N. p., 2018. Web. doi:10.1063/1.5030337.
Christopherson, A. R., Betti, R., Howard, J., Woo, K. M., Bose, A., Campbell, E. M., & Gopalaswamy, V. Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime. United States. doi:10.1063/1.5030337.
Christopherson, A. R., Betti, R., Howard, J., Woo, K. M., Bose, A., Campbell, E. M., and Gopalaswamy, V. Thu . "Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime". United States. doi:10.1063/1.5030337. https://www.osti.gov/servlets/purl/1463091.
@article{osti_1463091,
title = {Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime},
author = {Christopherson, A. R. and Betti, R. and Howard, J. and Woo, K. M. and Bose, A. and Campbell, E. M. and Gopalaswamy, V.},
abstractNote = {Here, a detailed and comprehensive 1-dimensional theory of alpha-heating metrics is developed to determine the onset of burning plasma regimes in inertial fusion implosions. The analysis uses an analytic model of the deceleration, stagnation, and burn phases of inertial confinement fusion implosions combined with the results from a database of radiation-hydrodynamic simulations. The onset of the burning-plasma regime occurs when the alpha-heating rate in the hot spot exceeds the compression power input and is represented by the parameter Qα = 1/2 α energy/PdV work. A second burning plasma regime is also identified, where the alpha-heating rate exceeds the compression input to the entire stagnated plasma, including the hot spot and confining shell, and is represented by Qtotα. It is shown that progress towards the burning-plasma regime is correlated with the yield enhancement caused by alpha-heating but is more accurately related to the fractional alpha energy fα = 1/2 α energy/hot-spot energy. In the analysis presented here, we develop a method to infer these intermediate metrics from experiments and show that the alpha power produced in National Ignition Facility High-Foot implosions is approximately 50% of the external input power delivered to the hot spot and 25% of the total external power (from compression) delivered to the stagnated core.},
doi = {10.1063/1.5030337},
journal = {Physics of Plasmas},
number = 7,
volume = 25,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: The fractional alpha-heating parameter $f_α$ is well correlated with the central value of the Lawson parameter $p_0τ/S_{α,0}$ for fα ≤ 1.4 (which corresponds to yield amplifications <10 of interest here).

Save / Share:

Works referenced in this record:

Measuring the absolute deuterium–tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF
journal, October 2012

  • Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4738657

Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
journal, May 2010

  • Betti, R.; Chang, P. Y.; Spears, B. K.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3380857

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Development of nuclear diagnostics for the National Ignition Facility (invited)
journal, October 2006

  • Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2236281

Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA
journal, May 2016

  • Stoeckl, C.; Boni, R.; Ehrne, F.
  • Review of Scientific Instruments, Vol. 87, Issue 5
  • DOI: 10.1063/1.4948293

Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited)
journal, October 2012

  • Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728095

A comprehensive alpha-heating model for inertial confinement fusion
journal, January 2018

  • Christopherson, A. R.; Betti, R.; Bose, A.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4991405

Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions
journal, July 2007


X-ray streak camera cathode development and timing accuracy of the 4ω ultraviolet fiducial system at the National Ignition Facility
journal, October 2012

  • Opachich, Y. P.; Palmer, N.; Homoelle, D.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732855

Ten-inch manipulator-based neutron temporal diagnostic for cryogenic experiments on OMEGA
journal, March 2003

  • Stoeckl, C.; Glebov, V. Yu.; Roberts, S.
  • Review of Scientific Instruments, Vol. 74, Issue 3
  • DOI: 10.1063/1.1534394

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules
journal, December 2001

  • Betti, R.; Umansky, M.; Lobatchev, V.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1412006

Integrated diagnostic analysis of inertial confinement fusion capsule performance
journal, May 2013

  • Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802196

Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
journal, April 2010


Initial performance results of the OMEGA laser system
journal, January 1997


Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Core conditions for alpha heating attained in direct-drive inertial confinement fusion
journal, July 2016


Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion
journal, October 2008

  • Zhou, C. D.; Betti, R.
  • Physics of Plasmas, Vol. 15, Issue 10
  • DOI: 10.1063/1.2998604

A framed monochromatic x-ray microscope for ICF (invited)
journal, January 1997

  • Marshall, F. J.; Oertel, J. A.
  • Review of Scientific Instruments, Vol. 68, Issue 1
  • DOI: 10.1063/1.1147688

Nuclear imaging of the fuel assembly in ignition experiments
journal, May 2013

  • Grim, G. P.; Guler, N.; Merrill, F. E.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4807291

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Gated x-ray detector for the National Ignition Facility
journal, October 2006

  • Oertel, John A.; Aragonez, Robert; Archuleta, Tom
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227439

Erratum: “Review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)]
journal, December 2014

  • Lindl, J. D.; Landen, O. L.; Edwards, J.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903459

Improved formulas for fusion cross-sections and thermal reactivities
journal, April 1992


Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

South pole bang-time diagnostic on the National Ignition Facility (invited)
journal, October 2012

  • Edgell, D. H.; Bradley, D. K.; Bond, E. J.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731756

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)
conference, October 2012

  • Khan, S. F.; Bell, P. M.; Bradley, D. K.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.930032

Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA
journal, July 2016


Some Criteria for a Power Producing Thermonuclear Reactor
journal, January 1957


High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)
journal, October 2012

  • Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4742926

The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


Fusion neutron energies and spectra
journal, July 1973